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We investigate theoretically the first effects of inertia on the orientation dynamics
of a torque-free spheroidal particle in simple shear flow when the deviation from
sphericity is small. The inertialess motion of any axisymmetric particle in simple
shear represents a degenerate limit, the spheroidal geometry being a special case;
as originally found by Jeffery (Proc. R. Soc. Lond. A, vol. 102, 1922, p. 161), the
orientation vector moves indefinitely along any one of a single-parameter family of
closed orbits centred around the vorticity axis, the distribution across orbits being
determined by initial conditions. We consider both the inertia of the particle and
that of the suspending fluid, characterized by the Stokes (St) and Reynolds numbers
(Re = ρf /ρpSt , ρp and ρf being the particle and fluid densities), respectively, as
mechanisms for breaking the aforementioned degeneracy. The former is defined as
St = a2γ̇ ρp/µ, where γ̇ is the shear rate, a is the radius of the unperturbed sphere
and µ is the fluid viscosity. When the particles are much denser than the suspending
fluid, as is the case for aerosols, St � Re (both parameters being much less than
unity), inertial forces in the fluid may be neglected. It is then found, in the absence
of gravity, that a slightly prolate spheroid drifts toward the shearing plane, while
the axis of a slightly oblate spheroid tends toward the vorticity axis, both on a time
scale of O(|ε|St γ̇ )−1, where ε(� 1) is the deviation from sphericity. For the case of
neutrally buoyant particles (St = Re), inertia of both the particle and fluid come into
play. In contrast to the small but finite St zero Re case, the orientation vector of
a neutrally buoyant prolate spheroid now migrates toward the direction of vorticity,
while that of an oblate spheroid drifts towards the shearing plane. The time scale of
drift towards the asymptotic state is O(|ε|Reγ̇ )−1 in both cases. Thereafter, we also
examine the rotations of prolate and oblate spheroids in the presence of both gravity
and shear, the analysis again being restricted to weak inertial effects. A wide range
of interesting orientational behaviour arises, and the long-time orientation dynamics
of the spheroids are determined as a function of both the density ratio ρp/ρf and a
shear parameter N , defined as N = 2aρf g/(9µγ̇ ).

1. Introduction
Suspensions of solid particles are encountered both as raw materials and

intermediates in a large number of industries such as printing and paper-making,
petroleum, pharmaceuticals and food processing. In most situations, the particles
tend to be non-spherical, or even irregularly shaped, the suspension rheology then
being sensitive to the orientation distribution of the suspended particles. The latter
is, in turn, affected by several factors including the particle shape and size, the
flow conditions, particle–particle interactions etc. In the context of obtaining a
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fundamental understanding of such suspension flows, it is therefore of interest to
predict the orientation distribution of the particulate phase as a function of the
particle properties and flow variables.

The motion of non-spherical particles in shear flows at vanishingly small Reynolds
numbers has been studied theoretically for a long time (see Leal 1980). It has, in fact,
been known since the work of Jeffery (1922), and later Bretherton (1962), that in the
absence of inertia, an axisymmetric particle in a simple shear flow rotates periodically
in one of an infinite single-parameter family of closed ‘Jeffery’ orbits. The particular
orbit adopted by the particle, in the absence of hydrodynamic interactions, Brownian
motion etc., depends on the initial conditions, however, rendering the inertialess limit
indeterminate. In this paper, we consider both particle and fluid inertia as possible
mechanisms acting to remove this indeterminacy. The former is characterized by the
Stokes number given as St = a2γ̇ ρp/µ, while the Reynolds number, Re = a2γ̇ ρf /µ,
represents the relative magnitude of fluid inertial and viscous forces; here, a is a typical
particle dimension, ρp and ρf are the particle and fluid densities, γ̇ is the shear rate,
and µ is the fluid viscosity. In order to make analytical progress, we examine the
limit where the aforementioned dimensionless parameters are small but finite; thus,
the analysis is for the first effects of inertia. The problem is simplified further by
assuming the axisymmetric particle to be a spheroid with an aspect ratio close to
unity, so the analysis captures the leading-order effect of the deviation from sphericity
on the particle orientational motion. Two different cases are investigated herein: the
first is that of a massive particle with a much higher density than the fluid for which
case St is finite but Re is negligible, a situation characteristic of gas–solid systems,
and the second corresponds to a neutrally buoyant particle for which ρp = ρf , or in
dimensionless terms, Re = St . In each case, we determine the leading-order inertial
torque that governs the drift of the spheroidal particle across the inertialess Jeffery
orbits. To the order considered, the perturbation remains regular and the inertial
torque turns out to be O(εSt) and O(εRe), respectively, for massive and neutrally
buoyant particles; as stated earlier, the deviation from sphericity, ε, is assumed to be
much less than unity. For all cases examined, the inertial torque eventually moves
the particle, on a time scale of O(|ε|St γ̇ )−1) (massive) or O(|ε|Reγ̇ )−1) (neutrally
buoyant), towards a unique steady or periodic state, thereby removing the inertialess
degeneracy.

The above analysis for a massive particle in simple shear flow neglects the orienting
effects of gravity; in other words, the Reynolds number based on the settling velocity,
Resed, is assumed to be negligible, since a spheroid sedimenting at zero Reynolds
number in an otherwise quiescent fluid maintains a constant orientation. The effect of
inertia on the orientation of a sedimenting spheroid is known from the work of Cox
(1965). Inertial forces arising from the asymmetric finite-Resed velocity disturbance
field cause the spheroid to orient broadside on to the direction of sedimentation.
For small deviations from sphericity, the inertial torque is again O(εResed) in the
limit Resed � 1, since the dominant contribution comes from a region around the
spheroid of order its own dimension. The regular nature of the inertial contributions
in both shear and sedimentation problems allow one, in the limit of weak inertia, to
analyse the rotation of a spheroid under the combined effects of sedimentation and
shear via a simple superposition. We therefore also investigate the rotation of both
prolate and oblate spheroids in the dual limits Re, Resed � 1 for varying directions of
sedimentation relative to the plane of shear.

In recent years, there has been an increase in the number of studies of particulate
suspensions with inertial effects. The dynamics of orientable particles in particular
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have been extensively studied using finite-element simulations. Almost all studies in
this regard have, however, been restricted to two dimensions owing to computational
constraints (Feng & Joseph 1995). In addition, the focus has been more on the motion
of particles with a non-spherical cross-section sedimenting in Newtonian and non-
Newtonian fluids, rather than their orientation behaviour in shear flows (Feng, Hu &
Joseph 1994; Huang, Feng & Joseph 1994; Feng et al. 1995). The motion of orientable
particles in simple shear flow at finite Reynolds numbers has also been explored using
lattice-Boltzmann simulations. Again, these studies, for the most part, examine either
two-dimensional problems involving the orientation behaviour of elliptic cylinders, or
restricted three-dimensional problems where spheroids are constrained to rotate about
one of their principal axes (see Aidun, Lu & Ding 1998; Ding & Aidun 2000). The
only three-dimensional lattice-Boltzmann simulations of neutrally buoyant orientable
particles in simple shear flow have been carried out by Qi & Luo (2002, 2003) who
investigated the rotations of prolate and oblate spheroids in the Reynolds number
range 8 <Re < 117, Re here being defined based on the semi-minor axis. Unlike the
inertialess limit, the orientation dynamics in shear flow differ qualitatively in two and
three dimensions at finite Reynolds numbers. In the planar case, for instance, the
period of rotation of an elliptic cylinder increases with increasing Re, and is found
to eventually diverge at a critical Reynolds number via a saddle-node bifurcation.
The slowing down of the rotation stems from the presence of recirculating regions
on either side of the cylinder that oppose the rotation of the ambient shear flow for
any finite Re, eventually arresting it at the critical value Rec; for an aspect ratio
of 2, Rec ≈ 29 (Ding & Aidun 2000). The finite-Re orientation behaviour in three
dimensions, as delineated by Qi & Luo (2003), is quite distinct. In fact, both prolate
and oblate spheroids while exhibiting transitions in the nature of rotation – from
tumbling to rolling or vice versa – as a function of Re, do not exhibit a stationary
state for the range of Re and aspect ratios examined; the ratio of major to minor
axis for all spheroids simulated, both prolate and oblate, was 2. Thus, the negative
torque arising due to streamline separation, and the resulting recirculating regions,
is presumably never strong enough to stop rotation. Qi & Luo (2003) also found
the constraint of a fixed axis of rotation (normal to the plane of shear), imposed by
Ding & Aidun (2000) on the ellipsoid, to be an artificial one; at the particular Re,
the constrained state is actually an unstable one and does not coincide with the final
orientation of a freely rotating oblate spheroid. The simulation results most relevant
to the theoretical analysis in this paper are those of Qi & Luo (2003) at the lowest
Reynolds numbers. The comparison is made in § 4, wherein possible reasons for the
discrepancy are also examined.

The paper is organized as follows. In § 2 we detail our approach, entailing use
of the generalized reciprocal theorem (Subramanian & Koch 2005), to obtain an
expression for the angular velocity of a torque-free spheroid in simple shear flow at
small but finite St or Re. A novel formulation of this theorem allows us, in particular,
to relate the O(Re) inertial correction to the angular velocity of a neutrally buoyant
spheroid with a near-unity aspect ratio, to the angular velocity of a sphere at small
but finite Re. The latter is known from the work of Lin, Peery & Schowalter (1970),
and saves us an enormous amount of algebra in the ensuing analysis. The general
relation for the inertial angular velocity, derived at the end of § 2, is then used for
a massive spheroidal particle (finite St , zero Re) in § 3, and a neutrally buoyant
particle (small but finite Re = St) in § 4. In the former case, it is found that a prolate
spheroid is centrifuged out to a state of equatorial rotation, while an oblate spheroid
asymptotes to an axial spin; this orientation behaviour is shown to be generally
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true for any axisymmetric particle. For the neutrally buoyant case, inertia of the
suspending fluid causes a prolate spheroid to drift toward an axial spin, and an
oblate spheroid to tumble, both about the vorticity axis of the ambient simple shear.
Recently, Subramanian & Koch (2005) showed, via a reciprocal theorem formulation,
that for sufficiently slender bodies in simple shear flow, the first effects of fluid inertia
result in a slow O(Re) drift (superposed on the fast Jeffery rotations) toward the flow–
gradient plane. The long-time orientation dynamics correspond to a tumbling motion
in this plane for Re <Rec, and to a stationary state for Re > Rec, where Rec is the
critical Reynolds number and is a function of the particle aspect ratio. Their results,
together with the analysis in § 4, characterize the orientation behaviour for very large
and near-unity aspect ratio spheroids, and thus serve to bracket the possible range
of behaviour exhibited by a prolate spheroid in simple shear flow, at small Re, as a
function of its aspect ratio. In § 5, we also discuss the conclusions of the theoretical
analysis in the context of the aforementioned simulations and available, albeit limited,
experimental evidence. Then, in § 6, the rotation of a non-neutrally buoyant spheroid
is analysed under the combined effects of sedimentation and shear, again in the
limit of weak inertia. For gravity aligned along the flow and gradient directions,
we find a whole range of interesting orientational motion depending on the relative
dominance of sedimentation and shear. Finally, § 7 presents a summary of the results
obtained.

2. Method
In order to examine the motion of a spheroidal particle in simple shear, we use

a generalization of the well-known reciprocal theorem for Stokes flow (Happel &
Brenner 1965). Previously employed in the context of slender fibre motion (see
Subramanian & Koch 2005), the generalized reciprocal theorem may be given as∫

S

n · σ · ũ dS +

∫
V

(∇ · σ ) · ũ dV =

∫
S

n · σ̃ · u′ dS +

∫
V

(∇ · σ̃ ) · u′ dV, (2.1)

and relates the two sets, (u′, σ ) and (ũ, σ̃ ), of velocity disturbance and stress fields.
Here, n is the unit normal pointing into the fluid domain V bounded by the surface
S. In applying the reciprocal theorem, the set (u′, σ ) corresponds to the motion of
the particles being investigated, in our case the rotation of a torque-free spheroid in
simple shear for small but finite St (and/or Re), while (ũ, σ̃ ), a simpler ‘test’ problem,
typically involves motion of the same particle(s) and for which case the solution is
known. For a single particle in an unbounded fluid domain, if the velocity disturbance
decays sufficiently rapidly away from the particle, the surface integrals at infinity may
be neglected, and the bounding surface S in the integrals in (2.1) becomes that of the
particle. The particular choice of the test problem is then dictated by the following
requirement: the boundary condition satisfied by ũ, or the value of the associated
force density σ̃ · n, on the particle surface be such that one of the surface integrals
is directly related to the dynamic quantity of interest, for instance the force on a
translating particle, the angular velocity of a torque-free particle in an external flow,
etc.

The above approach is exemplified in the work of Subramanian & Koch (2005)
who examined the first effects of inertia on the motion of a torque-free fibre in simple
shear. Herein, the test problem was chosen as the inertialess rotation of the slender
fibre in a quiescent fluid; the surface integral on the left-hand side of (2.1) then
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becomes proportional to the torque on the slender fibre in simple shear, being zero
for a torque-free fibre, while the one on the right-hand side is proportional to the
resulting angular velocity. Along similar lines, one would expect the choice of the test
problem for the present case of a spheroid to again be the Stokes rotation of the same
particle in a quiescent fluid. While this choice should certainly work, the subsequent
evaluations of both the surface and volume integrals become exceedingly tedious. This
is because, unlike a fibre for which slender body theory yields tractable expressions
for both the velocity disturbance and stress fields at leading order (see Batchelor
1970), the terms in the disturbance velocity field due to a near sphere, arising on
account of its deviation (ε) from sphericity, have a complicated form even at O(ε)
(see Brenner 1964).

In seeking an algebraically less involved approach for analysing a spheroid with
aspect ratio close to unity, it is certainly desirable to choose the test problem as one
involving a sphere. The surface S in (2.1) still needs to be that of the spheroid in order
for the surface integral containing σ to be proportional to the torque acting on the
spheroid. This then precludes two, perhaps obvious, candidates for the test problem,
the first being the Stokes rotation of a solid sphere included within the spheroid. The
velocity field due to the inscribed sphere will clearly not satisfy the solid-body rotation
condition on the surface of integration S, a spheroidal fluid surface circumscribing the
sphere, so that the aforementioned torque relation does not hold. The second one, that
of a circumscribing solid sphere rotating in a quiescent fluid, is also not convenient.
Though the velocity field for this case satisfies the requirement of solid-body rotation
on the surface of an inscribed spheroid, this being the surface S of integration, the
surface integral containing σ̃ would now entail knowledge of the stress field within the
sphere. The difficulty associated with this latter problem is, however, circumvented if
the circumscribing sphere were to be a fluid one. We therefore construct a composite
velocity field for our test problem with (shear) stress-free solid-body rotation inside a
fluid sphere circumscribing the spheroid, and a Stokes rotlet field corresponding to the
same angular velocity, outside it (see figure 1). The latter is the velocity disturbance
due to a sphere rotating in a quiescent fluid at zero Reynolds number (for instance,
see Kim & Karrila 1991); as will be seen later in § 4, the inverse-square far-field
decay of the rotlet field allows one to determine the inertial torque, to O(Re), on the
spheroid in simple shear flow using only the Stokes approximation for the velocity
disturbance u′. We also note for an incompressible fluid that the velocity field inside
the fluid sphere is characterized by an arbitrary constant pressure in the absence of
inertia. Such a velocity field is no longer a solution of the Stokes equations because
the discontinuity in the shear stress at the surface of the fluid sphere can only be
maintained by a surface distribution of forces, and the latter leads to a non-zero
divergence for the test stress field σ̃ . The stress field can, in fact, be written as

σ̃ = H (r − Rs)σ rot , (2.2)

where we have taken the pressure inside the fluid sphere of radius Rs to be zero. Here,
H (z) is the Heaviside function, and σ rot is the stress associated with the rotlet. In
equation (2.2) and those that follow, the variables have been made dimensionless using
a, the half-length of the spheroid measured along its axis of symmetry, as the length
scale, and γ̇ −1, γ̇ being the shear rate, as the relevant time scale; thus, u′ ∼ O(γ̇ a),
σ ∼ O(µγ̇ ), etc. The radius Rs of the circumscribing fluid sphere depends on the
functional form used for the spheroidal surface (see below). Using the expression
(Ω̃ ∧ r)/r3 for the rotlet field, Ω̃ being the angular velocity of the fluid sphere,
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Figure 1. The choice of the composite test velocity field ũ in (2.1) for the cases of (a) a prolate
and (b) an oblate spheroid with axis of symmetry along p. It consists of a solid-body rotation
field (Ω̃ ∧ r) inside a circumscribing fluid sphere (dot-dashed line) of radius Rs for which the
circular streamlines are shown in an equatorial plane; the velocity field in the region r > Rs is
a Stokes rotlet field given by (Ω̃ ∧ r)/r3. Note that the prolateness and oblateness have been
exagerated for clarity.

(2.2) gives

σ̃ = − 3

r5
H (r − Rs)[(Ω̃ ∧ r)r + r(Ω̃ ∧ r)], (2.3)

so that

∇ · σ̃ = −δ(r − Rs)
3(Ω̃ ∧ r)

r4
. (2.4)

Having made the choice of the test problem, we move on to the problem of interest
for which the divergence of the stress field is given by

∇ · σ = Re

[
∂u′

∂t
+ Γ · u′ + (Γ · r) · ∇u′ + u′ · ∇u′

]
= f (r), (2.5)

where the terms on the right represent the inertial acceleration associated with the
disturbance velocity field u′ in simple shear for finite Re. Here, Γ = exey is the velocity
gradient tensor in simple shear with x, y and z corresponding to the flow, velocity
gradient and vorticity directions, respectively.

Using (2.3), (2.4) and (2.5) in (2.1), one obtains∫
S

n · σ · ũ dS = −3

∫
r=Rs

dS (Ω̃ ∧ n) · u′|r=Rs
− Re

∫
V

ũ · f dV, (2.6)

where the surface element dS = R2
s dŜ, dŜ being a differential solid angle element. It is

seen that the singular force density in the test problem necessitates knowledge of the
velocity field u′ on the sphere (r =Rs) for small but finite Re. Using the solid-body
rotation field for ũ for r < Rs in the surface integral on the left gives

Ω̃ · L = −3

∫
r=Rs

dS (Ω̃ ∧ n) · u′|r=Rs
− Re

∫
V

ũ · f dV, (2.7)
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where L is the non-dimensional torque on the spheroid and V refers to the volume
of fluid external to its surface.

For small deviations from sphericity, the surface of a spheroid may be expressed as

r = (1 + εh( p · n)) (2.8)

with h( p · n) = (−1 + p p : nn) = −sin2 ψ , where ψ is the polar angle made by the unit
normal n with the orientation vector p along the spheroidal axis. It is easily seen
that the spheroid is prolate for ε > 0 and oblate for ε < 0; in the former (latter) case,
the major and minor axes are 1(1 − ε) and 1 − ε(1), respectively. This implies that
the radius of the fluid sphere Rs must be 1 for a prolate spheroid and (1 − ε) for
an oblate one (ε < 0), in order for it to circumscribe the spheroid in either case. For
finite St , the torque L on the spheroid is related to its angular acceleration by

L = St
d

dt
(I · Ωp), (2.9)

where Ωp is the angular velocity of the spheroid. In the above, I = I1 p p+I2(I− p p)
is the moment of inertia tensor of the spheroid, where the axial and equatorial
moments are, respectively, given by I1 = (1 − 4ε)Isphere and I2 = (1 − 3ε)Isphere in
the limit ε � 1, Isphere =8π/15 being the non-dimensional moment of inertia of the
unperturbed sphere. Using (2.9) and the value of Rs , (2.7), after some manipulation,
may be written as

St Ω̃ ·
[
(I1 − I2)(Ωp · p)(Ωp ∧ p) + I2(I − p p) · dΩp

dt
+ I1 p

d

dt
(Ωp · p)

]

= −3

∫
r=Rs

dS (Ω̃ ∧ n) · u′

∣∣∣∣∣Rs=1 (prolate)

Rs=1−ε (oblate)

− Re

∫
V

ũ · f dV, (2.10)

where the left-hand side is identical in structure to the classical Euler’s equations for
rigid-body rotation (Goldstein 1980). Indeed, on setting the right-hand side in (2.10)
to zero, one obtains the dynamics of a torque-free prolate or oblate spheroid in the
absence of an ambient flow. Unlike the inertialess limit, the axial spin of the spheroid
for finite St affects the equatorial angular momentum balance on account of the
centrifugal and gyroscopic mechanisms (see § 3). In the subsequent evaluation of the
torque contributions, we use a system of axes that is instantaneously aligned with
the spheroidal axis of symmetry p, but is fixed in space, so that the ambient simple
shear flow is steady in this inertial frame of reference. It is worth mentioning that
Euler’s equations for rigid-body dynamics, normally derived for a system of body-fixed
axes, remain unaltered in this reference frame. This is because the time derivatives
in the two frames of reference are related by (d/dt)sf (.) = (d/dt)bf (.) + Ωp ∧ (.), the
subscripts sf and bf referring to space-fixed and body-fixed, respectively; the equation
for the rate of change of angular velocity thus remains unchanged.

The determination of the inertial angular velocity of a neutrally buoyant spheroid
in simple shear (see § 4) requires evaluation of the volume integral on the right-hand
side of (2.10). This involves the inertial terms given by f (r) in (2.5), and appears
to require knowledge of the fluid velocity disturbance u′ due to the spheroid at
finite Re. As is well-known, determination of a uniformly valid representation of the
disturbance velocity field due to particle motions in presence of inertia, and in an
unbounded fluid domain, is non-trivial, requiring singular perturbation methods. For
the case under consideration, the Stokes approximation to u′ breaks down beyond
an inertial screening length that scales as aRe−1/2, since the convection of u′ by the
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ambient shear becomes comparable to viscous diffusion at larger distances. Thus, for
distances greater than aRe−1/2, the ‘outer’ velocity field must be obtained by solving
the linearized Navier–Stokes equation that includes, at leading order, the inertial terms
arising from the ambient shear. However, a representation of this outer flow is not
needed for our problem since the dominant contributions to the volume integral arise
from regions near the particle. To see this simplification we first note that a neutrally
buoyant spheroid in a linear flow creates a dipole disturbance velocity that is O(1/r2)
for large distances, and connects smoothly to the outer solution for distances greater
than the screening length. The test velocity field due to a rotating sphere has the same
far-field dipole character, again being of O(1/r2) for large r . The contribution to the
volume integral from the outer region can then be estimated as∫ ∞

O(Re−1/2)

ũ · f dV ≈
∫ ∞

O(Re−1/2)

O

(
1

r4

)
r2dr ∼ O

(
Re1/2

)
,

and affects the angular velocity Ωp of the spheroid only at O(Re3/2). It therefore
suffices to use the Stokes approximation for u′ for purposes of determining the first
effects of inertia which occur at O(Re). The Stokes velocity disturbance due to an
arbitrarily oriented spheroid in simple shear is obtained in § 4 using earlier results of
Chwang & Wu (1975).

Finally, we consider the first term on the right-hand side of (2.10) involving the
velocity disturbance u′ of the spheroid on the surface of the circumscribing fluid
sphere r = Rs . As was seen earlier, this term is generated by the divergence of
the stress σ̃ in the test problem, and the relative simplicity of the aforementioned
approach is contingent on its evaluation without difficulty. Unlike the case of the
volume integral above, there is no prefactor of Re associated with this term, implying
that u′ must now be determined while accounting for the O(Re) inertial terms. In
the limit of the prolate or oblate spheroid having an aspect ratio near unity, i.e. for
ε � 1, one can, however, relate u′|r=Rs

to the corresponding disturbance velocity due
to a sphere for small but finite Re. In either case, the inertial correction to the Stokes
approximation is O(Re), being regular, and entailing a solution of the inhomogeneous
Stokes equations in a region near the particle. For the case of a sphere, this has been
done previously by Lin, Peery & Schowalter (1970) who examined the first effects of
inertia on the rheology of a dilute suspension. In order to use their result, we first
note that u′(r, p, t; ε, Re) satisfies the equations

∇2u′ − ∇p = Re f (r),

∇ · u′ = 0,

with the boundary conditions

u′ → 0 as r → ∞,

u′ = (Ωp ∧ r) − Γ · r at r = (1 + εh)n.

The boundary condition on the spheroidal surface can be translated onto the surface
of a sphere by expanding it as a Taylor series for small ε, as is typically done in
domain perturbation problems (Leal 1992); we have

u′{(1 + εh)n, p, t;ε, Re} = Ωp ∧ {(1 + εh)n} − Γ · {(1 + εh)n}
⇒ u′(n, p, t; ε, Re) + εhn · ∇u′(n, p, t; ε, Re)

= (Ωp ∧ n − Γ · n) + εh(Ωp ∧ n − Γ · n) + O(ε2).
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Further, writing u′(n, p, t; ε, Re) = u′(0)(n; Re) + εu′(1)(n, p; Re) + O(ε2), one obtains

O(1) : u′(0)(n; Re) = (Ωp ∧ n − Γ · n), (2.11)

O(ε) : u′(1)(n, p; Re) = −hn · ∇u′(0)|r=1 + h(Ωp ∧ n − Γ · n), (2.12)

at successive orders, where the leading-order problem involving u′(0) corresponds
to that of a freely rotating sphere in simple shear. Here, we have written down
explicitly the dependence of u′, u′(0) and u′(1) on both the relevant variables (r, p, t)
and parameters (ε, Re) in order to emphasize the fact that the leading-order velocity
disturbance u′(0) due to a neutrally buoyant sphere in simple shear is time independent.
In fact, even u′(1) is dependent only on the instantaneous orientation; unsteady inertial
effects (∂u′/∂t) only enter the problem at O(ε2), the dependence on time being implicit
via the changing orientation vector p.

For the cases of a prolate and an oblate spheroid with Rs = 1 and (1 − ε) respectively,
the velocity on the surface of the circumscribing fluid sphere, to O(ε), may now be
found as

u′|Rs=1 = u′(0)(n) + εu′(1)(n) (ε > 0), (2.13)

u′|Rs=1−ε = u′(0)(n) + ε
(
u′(1)(n) − n · ∇u′(0)

)
(ε < 0), (2.14)

with the expression for the normal derivative of u′(0) obtained, to O(Re), from Lin
et al. (1970). The reciprocal theorem, as given by (2.10), takes the form

StΩ̃ ·
[
(I1 − I2)(Ωp · p)(Ωp ∧ p) + I2(I − p p) · dΩp

dt
+ I1 p

d

dt
(Ωp · p)

]

= −3

∫
r=Rs

dS(Ω̃ ∧ n) ·
[

u′(0)(n) + εu′(1)(n)

u′(0)(n) + ε
(
u′(1)(n) − n · ∇u′(0)

)] − Re

∫
V

ũ · f dV, (2.15)

where the top row in the matrix on the right corresponds to a prolate spheroid, and
the bottom to an oblate one; here, u′(0)(n) and u′(1)(n) are given by (2.11) and (2.12),
respectively. Since the test velocity ũ in the volume integral is proportional to Ω̃ , the
latter is arbitrary, as must be the case.

We observe here that the leading-order inertial torque, to be found in §§ 3 and 4
below, is O(εSt) and O(εRe) for the cases of a massive and a neutrally buoyant
particle. The regularity with respect to the shape parameter ε and particle inertia
(St) is to be expected, while the regular nature of the correction due to fluid inertia
was demonstrated earlier in this section. In particular, the above implies that there is
no orienting torque on a sphere (ε = 0) in simple shear flow even in the presence of
inertial forces, as is immediately evident from symmetry; it continues to spin about
the vorticity axis. In fact, even the O(Re) correction to this axial spin is related
to vortex stretching in the ambient linear flow, and the angular spin thus remains
unaltered to O(Re) in simple shear (see Lin et al. 1970) for which case ω · E =0, ω

here being the vorticity vector and E the rate-of-strain tensor. This may be used to
simplify (2.15) by first noting that the additional term in the surface integral for an
oblate spheroid, proportional to εn · ∇(u′(0))†, is independent of p. Then, on rewriting
its integral over the unit sphere as

3εΩ̃ ·
∫

n ∧ n · ∇u′(0),

† This term arises because the radii Rs of the circumscribing fluid spheres for the prolate and
oblate cases differ by ε, being 1 in the former case and 1 − ε for the latter.
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it follows that the term does not contribute for Re = 0 since the velocity disturbance in
this case is linear in E, and a surface integral over the unit sphere yields ε :E which, of
course, vanishes. For finite Re, excluding terms corresponding to solid-body rotation,
the handedness of the cross-product (with n) ensures that the only non-vanishing
quadratic term in the leading-order inertial correction, after angular integration, is
of the form ω · E which is, however, zero for simple shear. Thus, to O(Re), the term
εn · ∇u′(0) for an oblate spheroid may be neglected. For similar reasons, one may also
take Rs = 1 in the surface integral in (2.15) for both prolate and oblate spheroids. It
will be seen later in § 4 that fluid inertial corrections to the angular velocities of a
prolate and an oblate spheroid in simple shear are identical in magnitude, differing
only in sign. Using the expression for the rotlet velocity disturbance ũ, and the fact
that Ω̃ is arbitrary, (2.15) may finally be written as

St

[
(I1 − I2)(Ωp · p)(Ωp ∧ p) + I2(I − p p) · dΩp

dt
+ I1 p

d

dt
(Ωp · p)

]

= −3

∫
r=1

dSn ∧
{

u′(0)(n) + εu′(1)(n)
}

− Re

∫
V

(r ∧ f )

r3
dV, (2.16)

with ε > 0(<0) for a prolate (oblate) spheroid. In §§ 3 and 4 below, we use (2.16) in
order to evaluate Ωp for the cases of finite St , zero Re and St = Re, respectively.

Zhang & Stone (1998) have previously used a modified reciprocal theorem to
determine the force and torque on a nearly spherical particle undergoing small-
amplitude translational and rotational oscillations in an otherwise quiescent fluid.
They, however, only consider unsteady inertial forces, so the fluid motion satisfies
the linear unsteady Stokes equations, and the final form of the reciprocal theorem
formulation reduces to a relation between surface integrals; the volume distributions
of forcing in the presence of convective inertia do not arise. They similarly exploit the
known solutions for a sphere by choosing a test problem that involves an unsteadily
translating/rotating sphere. Thus, both the sphere and nearly spherical particle satisfy
the unsteady Stokes equations for their case, which is unlike the present scenario where
the test velocity field does not involve a solid particle at all. In fact, the non-zero
divergence of the stress field in our test problem is related to the discontinuity of the
shear stress at the surface of the circumscribing fluid sphere, and bears no relation to
the governing equations of motion for the non-spherical particle, where the divergence
of the stress arises on account of the O(Re) inertial acceleration.

3. Massive spheroidal particle in simple shear flow: Re = 0, St � 1

Herein, we look at the orienting effects of the inertial torque in simple shear when
the spheroidal particle is much denser than the suspending fluid, i.e. ρp � ρf . In this
limit, particle inertia (St) may play an important role in the orientation dynamics
with fluid inertial forces, characterized by Re, still being negligible. An added torque
arises in such a situation due to inertia associated with settling under gravity, but
is not included here; the effects of inertia, associated with both sedimentation and
shear, on the orientation dynamics is considered later in § 6. Thus, setting Re = 0 in
(2.15) gives

St

[
(I1 − I2)(Ωp · p)(Ωp ∧ p) + I2(I − p p) · dΩp

dt
+ I1 p

d

dt
(Ωp · p)

]

= −3

∫
r=Rs

dSn ∧
{

u′(0)(n) + εu′(1)(n)
}
, (3.1)
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where u′(0) is now the Stokes velocity disturbance field due to a freely rotating sphere
in simple shear. This is well known (for instance, see Leal 1992), being given by

u′(0)(r) = −E · r
r5

− 5

2

(r · E · r)r
r5

(
1 − 1

r2

)
, (3.2)

so that

u′(0)(n) = −E · n, (3.3)

n · ∇u′(0) = 4E · n − 5n(n · E · n). (3.4)

Using (2.12) and (3.4) to calculate u′(1) in (3.1), one obtains after angular integration:

St

[
(I1 − I2)(Ωp · p)(Ωp ∧ p) + I2(I − p p) · dΩp

dt
+ I1 p

d

dt
(Ωp · p)

]

= −8π

(
1 − 3ε

5

)
Ωp +

8πε

5
(Ωp · p) p + 4π

(
1 − 4ε

5

)
ε:Γ

+
8πε

5
p ∧ (Γ · p) +

32πε

5
p ∧ (E · p). (3.5)

To begin with, considering (3.5) in the inertialess limit, namely St = 0, we have

−2

(
1 − 3ε

5

)
Ωp +

2ε

5
(Ωp · p) p +

(
1 − 4ε

5

)
ε : Γ +

2ε

5
p ∧ (Γ · p) +

8ε

5
p ∧ (E · p) = 0.

(3.6)

The axial component of (3.6) is just Ωp · p =(1/2)ω · p, implying that the particle
spins with an angular velocity commensurate with the component of the ambient
vorticity along its axis. The equatorial angular momentum balance, to O(ε), reduces
to

Ωp · (I − p p) =
1

2

[
ε :Γ + ε

{
−1

5
ε : Γ +

2

5
p ∧ (2Γ + 4E)

}]
· (I − p p). (3.7)

In a coordinate system with the ‘1’ direction aligned with the spheroidal axis and
the ‘3’ direction chosen to lie in the (x, y)-plane (the plane of shear), one has
Ωp2 = sin θ dφ/dt and Ωp3 = dθ/dt , where θ is the angle between the spheroidal
axis of symmetry and the direction of ambient vorticity, and φ is the dihedral angle
between the flow–vorticity plane and the plane containing the spheroidal and vorticity
axes. The individual components of (3.7) are then given by

Ωp3 =
dθ

dt
= ε sin θ cos θ sin φ cos φ, (3.8)

− Ωp2

sin θ
=

dφ

dt
= −1

2
+

ε

2
(1 − 2 sin2 φ), (3.9)

which, on identifying ε with e2/2, e being the eccentricity, may readily be verified
as being the limit of the well-known Jeffery orbit equations for a spheroid in the
limit e � 1. The Jeffery orbit constant is C = tan θ(1 − ε cos2 φ), and it may indeed be
shown using (3.8) and (3.9) that dC/dt is zero up to O(ε).

For finite St , the axial component of (3.5) reduces to

St
d

dt
(Ωp · p) = −15

2

(
Ωp · p − 1

2
ω · p

)
, (3.10)
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which is again a familiar result. Fluid inertia being neglected, the hydrodynamic
torque on the particle is quasi-steady and the axial spin (Ωp · p) of the spheroidal
particle, according to (3.10), relaxes exponentially on a time scale of O(Stγ̇ −1) towards
its steady-state value. Although the latter differs by O(εSt) from its inertialess value,
(1/2)ω · p, this correction is not needed for determining the O(St) correction to
the orbit equations for a spheroid. Indeed, the axial spin of the spheroid enters
the equatorial balance of angular momentum only in the form St(Ωp · p)(I1 − I2),
(I1 − I2) being of O(ε), and for purposes of predicting the drift in orientation, it
therefore suffices to assume the spheroidal spin as being equal to its inertialess value.

Taking the difference between (3.5) and the projection of (3.10) along p, one obtains
the following equation for the equatorial angular velocity components at finite St:

St
8π

15

[
−ε(Ωp · p)(Ωp ∧ p) + (1 − 3ε)(I − p p) · dΩp

dt

]

= −8π

(
1 − 3ε

5

)
Ωp + 4π

(
1 − 4ε

5

)
ε:Γ +

8πε

5
p ∧ (Γ · p)

+
32πε

5
p ∧ (E · p). (3.11)

Expand Ωp in the form

Ωp = Ωj
p + StΩc

p + . . . ,

with Ωj
p the inertialess Jeffery value whose equatorial components are given by (3.8)

and (3.9), and Ωc
p the leading-order inertial correction. At O(St), one obtains

Ωc
p = − 1

15

[
−ε

4
(ω · p)(ω ∧ p) + (I − p p) ·

dΩj
p

dt

]
, (3.12)

where we have used the fact that Ωp = ω/2 + O(ε), and neglected all terms that are
O(ε2) or smaller.

Substituting for Ωj
p and, as before, employing a coordinate system aligned with the

spheroidal axis, one obtains

Ωc
p2 =

1

15
sin θ sin φ cos φ, (3.13)

Ωc
p3 =

−1

15

[
−cos θ sin θ

4
+

sin θ cos θ

2
(sin2 φ − cos2 φ)

]
, (3.14)

where, in (3.14), we have written down separately the angular acceleration arising
from the term (ω · p)(ω ∧ p), proportional to the axial spin of the spheroid, and that
arising from the variation of its inertialess angular velocity along a Jeffery orbit. The
latter turns out to be periodic and therefore does not contribute to a net drift of the
spheroidal orientation vector.

To O(εSt), the orbit equations may be written as

dθ

dt
= ε sin θ cos θ sin φ cos φ +

εSt

30
sin θ cos θ

(
1

2
+ (cos2 φ − sin2 φ)

)
, (3.15)

dφ

dt
= −1

2
+

ε

2
(1 − 2 sin2 φ) − εSt

15
sin φ cos φ. (3.16)

It is seen from (3.16) that the orientation distribution of the inertial spheroid in
simple shear is no longer symmetrical about the velocity gradient axis. Specifically,
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the finite-St correction causes the spheroid to spend an additional O(St) amount of
time in the compressional quadrants, as it (slowly) rotates out of flow alignment, than
in the extensional ones.

The equation for the orbit constant, to O(Stε), then becomes

dC

dt
= sec2 θ

dθ

dt
, (3.17)

⇒ dC

dt
=

εSt

30

[
1

2
+ (cos2 φ − sin2 φ)

]
C + O(Stε2) + O(St2ε), (3.18)

where we have used (3.15) for the change of θ . For a spheroidal aspect ratio close to
unity, as is the case for small ε, the Jeffery orbits, at leading order, are just circles
centred around the vorticity axis, i.e. θ remains constant along one such orbit. This
then implies that the change in orbit constant over a 2π rotation, resulting from the
second term in (3.18), may simply be calculated as the integral of (cos2 φ − sin2 φ)
over the same interval. This is, of course, zero since the integrand is periodic with a
zero mean. Thus, C → ∞(0) for ε > 0 (<0); in other words, a prolate spheroid drifts
slowly towards the plane of shear over several Jeffery rotations, while the drift of an
oblate spheroid is toward the vorticity axis, the drift in either case being entirely due
to the first term in (3.18). Figure 2 shows both the orbit of a rotating prolate spheroid,
as seen in the (x, y)-plane, with St = 0.5, ε =0.5, and the accompanying increase in
the orbit constant (plotted as the renormalized ratio C/(C +1)) as a function of time;
the rather large values of St and ε were deliberately chosen in order to exhibit clearly
the tight outward spiralling of the spheroidal axis.

The direction of the drift predicted above appears consistent with the intuitive effect
of centrifugal forces acting on prolate and oblate distributions of mass revolving in
a (circular) Jeffery orbit. This does not reveal the complete picture, however. For
instance, just taking into account this centrifugal mechanism would seem to imply
that the only steady-stable orbits of a prolate or an oblate spheroid, in the absence
of a suspending fluid, would be rotations about either its axis of symmetry or one
of its equatorial axes. Other trajectories, with the angular velocity vector no longer
coincident with the spheroidal axis of symmetry, should then spiral out – toward a
stable rotation about its equatorial axis for a prolate spheroid, and toward an axial
spin for an oblate one. This is, of course, not true, since a torque-free spheroid is
known to rotate in a set of non-trivial orbits wherein the angular velocity vector
precesses at a constant rate about the fixed angular momentum vector in space. This
axisymmetric precession, characterized by the solutions of the Euler equations for
rigid-body dynamics, has been extensively documented in classical texts on mechanics
(see Goldstein 1980; MacMillan 1960). In order to better understand the inertial
drift mechanism for our problem, we therefore start by delineating briefly the physics
governing the precessing orbits of a freely suspended spheroid in the absence of an
ambient fluid.†

† The necessity of dwelling on what is clearly a thoroughly investigated topic is also motivated
by a woeful lack of physical explanations in texts devoted to analytical mechanics. Analyses of
rigid-body dynamics usually abound in mathematical details, and ingenious ways of characterizing
the properties of the precessing orbits – the latter, in particular, being epitomized by statements
like ‘the polhode rolls without slipping on the herpolhode lying in the invariable plane’ (Goldstein
1980). All of these undoubtedly offer insight into the geometry of precession, but the lack of an
accompanying physical picture masks the forces underlying the precession mechanism.
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Figure 2. (a) The orbit, projected onto the flow–gradient plane, of a prolate spheroid in
simple shear flow with Re = 0, St = 0.5 and ε = 0.5. The accompanying increase in the orbit
constant is shown in (b) where the ratio C/(C + 1) is plotted as a function of time; note that
C/(C + 1) → 1 as t → ∞ for a massive prolate spheroid.

The precessions of a prolate and an oblate spheroid are illustrated in figure 3(a, b),
showing them to be the result of a balance between centrifugal and gyroscopic
forces. As discussed earlier, the direction of the centrifugal force in the two cases is
immediately evident; figure 3(c) depicts the details of the gyroscopic force acting on
a precessing prolate spheroid. This force commonly manifests itself when one tries to
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Figure 3. (a, b) The force balance for a torque-free precessing spheroid in (a) the prolate
and (b) oblate cases; here, L denotes the (constant) angular momentum vector, p the axis of
symmetry of the spheroid, and ω the (precessing) angular velocity vector. The (c) gyroscopic
mechanism that comes into play for a precessing prolate spheroid, and that provides the
restoring mechanism opposing the centrifugal forces; refer to text for explanation of symbols.

tilt a spinning wheel; contrary to intuition, the wheel ends up tilting about an axis
that is orthogonal to both its spin axis and that corresponding to the applied tilting
torque. The gyroscopic mechanism in the context of the precessing spheroid may
be understood by decomposing the angular velocity into axial (wa) and equatorial
components(we). It is then seen that the plane ABCD, for instance, spins with wa

and is tilted by the equatorial component we. Focusing on the points B and D, this
tilting effect pushes down on the point B and pushes the point D up; however, after
a quarter of a spin period, the point B that is being pushed down arrives at C, and
the point D goes to A so that the plane ABCD actually tends to tilt in a direction
towards the axis of precession L. This effect then serves to balance the centrifugal
forces tending to push the prolate spheroid out onto its front. It is also evident
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then that for this mechanism to act, the axial spin of the prolate spheroid must be
faster than that corresponding to solid-body rotation. Since the axial and equatorial
angular velocity vectors w add up to a constant in the latter case, the positions of the
points A, B, C and D relative to the axis of rotation (also the direction of w) remain
unchanged; thus, the unbalanced centrifugal forces cause the prolate spheroid to drift
towards an equatorial rotation. The greater magnitude of the axial spin component
for a precessing prolate spheroid is clearly seen in figure 3 where the angular velocity
vector w now tilts towards the spheroidal axis, and itself precesses around the constant
angular momentum vector L. It immediately follows that the axial spin of an oblate
spheroid must be slower than that in a solid-body rotation for the resulting gyroscopic
force to balance the centrifugal forces that are now oppositely directed – w again
precesses about L, but is now located on the opposite side of L relative to p due to
the larger relative magnitude of the equatorial component we.

We now move on to the case of a torque-free spheroid with a near-unity aspect
ratio in an ambient fluid subject to simple shear. For small St , the aforementioned
forces act on the spheroid as it rotates in an inertialess Jeffery orbit. The Jeffery
orbits for a near-sphere are, at leading order, circles centred about the vorticity axis.
From (3.8), it is seen, however, that the O(ε) prolate (oblate) deviation from sphericity
causes them to be slightly more elongated along the flow (gradient) axis (φ =0(π/2)).
The corresponding variation in the angular velocity is so as to make the prolate
(oblate) particle rotate more slowly when moving through orientations with φ close
to 0(π/2). This O(ε) difference in angular velocity is a periodic fluctuation about the
leading-order angular velocity of the sphere. The corresponding additional torque on
the near-sphere, due both to the centrifugal and gyroscopic mechanisms, resulting
from this periodic angular acceleration will also be periodic with a zero mean, being
given by the second term in (3.18), and clearly does not lead to a net drift over a
Jeffery period. It therefore suffices, for the purposes of determining the direction of
the drift of the spheroid over several rotation cycles, to neglect the O(ε) variation
of its angular velocity along a Jeffery orbit. The simplified picture then consists of
a prolate or an oblate spheroid executing a solid-body rotation about the vorticity
axis, implying that there is no gyroscopic mechanism that can balance the centrifugal
forces. The latter, of course, lead to a net drift of any non-axisymmetric distribution
of mass. Thus, for small but finite St , a prolate spheroid drifts towards an equatorial
rotation (tumbling) in the plane of shear, while the oblate spheroid orientation
vector aligns itself with the vorticity direction, consistent with an asymptotic state
having only an axial spin. The final simplified picture of a rotating prolate or
an oblate spheroid being acted on by centrifugal forces conforms to our earlier
intuition.

It is argued now that the above conclusions may, in fact, be extended to a general
axisymmetric particle. The aforementioned drift of a prolate or an oblate spheroid
may be thought of as being due to centrifugal forces that arise as it rotates in a Jeffery
orbit. Now, in the inertialess limit, i.e. with Re = St =0, as shown by Jeffery (1922),
any axisymmetric particle rotates indefinitely along a characteristic Jeffery orbit. Also,
every such axisymmetric particle has an associated inertia spheroid, representable in
terms of a transversely isotropic inertia tensor, that, in the absence of an ambient
fluid, would control the free-body dynamics. This inertia spheroid has, of course, the
same symmetry axis as the actual body, and therefore the aforementioned mechanism
involving centrifugal forces remains unchanged, except that the actual spheroidal
particle is now replaced (for the purposes of deducing the drift) by the equivalent
inertia spheroid of a generic axisymmetric particle. This immediately leads one to
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conclude that the symmetry axis of any prolate (oblate) axisymmetric body will drift
towards the plane of shear (vorticity axis) for finite St and zero Re.

4. Neutrally buoyant spheroidal particle in simple shear flow: Re(=St) � 1

In order to determine the torque on a neutrally buoyant spheroid in simple shear
at finite Re, one needs to evaluate the volume integral in (2.16) that accounts for the
contributions arising from fluid inertial forces. Using the expression for f (r) given by
(2.5), this inertial contribution becomes

Re

∫
V

1

r3
r ∧

[
∂u′

∂t
+ Γ · u′ + (Γ · r) · ∇u′ + u′ · ∇u′

]
dV, (4.1)

where V refers to the volume external to the spheroidal particle. As argued earlier
in § 2, it suffices, at O(Re), to use the Stokes approximation for u′, the non-uniform
nature of this leading-order term coming into effect only at O(Re3/2). In order to
obtain the Stokes velocity disturbance due to a spheroid arbitrarily oriented relative
to a simple shear flow, we exploit the results of Chwang & Wu (1975) who used the
singularity method in order to derive solutions of the Stokes equations for a range
of particle shapes and motions. The details of this derivation are summarized in the
Appendix; the final form of the Stokes velocity disturbance due to the spheroid in
simple shear, in the limit ε � 1, may then be written as

u′ = u′s + 2ε(v′
1 + v′

2 + v′
3 + v′

4 + v′
5), (4.2)

where u′s is given by (3.2) and
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v′
5 =

sin2 θ sin φ cos φ
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Here, we have used ( p, p⊥
1 , p⊥

2 ) for the unit orthonormal set (11, 12, 13) in the interests
of retaining vector notation; in the latter coordinate system, the unit vector 11 is
aligned with the spheroidal axis, while 13 is perpendicular to the ambient vorticity
vector in simple shear. Thus, p′⊥

1 = ( p⊥
1 + p⊥

2 )/
√

2 and p′⊥
2 = ( p⊥

2 − p⊥
1 )/

√
2.

The fluid contribution to the inertial torque on the spheroid is given by

Re

∫
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r3
r ∧

[
∂u′

∂t
+ Γ · u′ + (Γ · r) · ∇u′ + u′ · ∇u′

]
dV, (4.8)

which may be written as
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]
dV, (4.9)

where Vs is the volume external to the circumscribing fluid sphere. As seen above,
it suffices to use the leading-order disturbance u′s when integrating over the O(ε)
annular volume (V − Vs) included between the fluid sphere and the spheroid. On the
other hand, since ω · E = 0 in simple shear flow, u′s when integrated over the volume
external to the fluid sphere does not lead to a net torque, and has been excluded in the
evaluation of the second term in (4.9). For the same reason, there is no contribution
to the torque from the O(ε) annular region included between the circumscribing fluid
spheres in the prolate and oblate cases, and it suffices, for the purposes of determining
(4.9) to O(εRe), to take Rs = 1.

Since the surface of the spheroid is given by r = (1 + εh) with h( p · n) = −1 +
p p : nn, the region contributing to the torque in the first term in (4.9) is an annular
region with thickness ε(1 − p p : nn). Thus, the volume integral may be written in
terms of a surface integral over the unit sphere; one obtains

Re

∫
Vs−V

1

r3
r ∧ [Γ · u′s + (Γ · r) · ∇u′s + u′s · ∇u′s]dV,

= εRe

∫
r=1

dS(1 − p p : nn)n ∧ [Γ · u′s + (Γ · n) · ∇u′s + u′s · ∇u′s], (4.10)

where u′s(n) and ∇u′s(n) may be derived using (3.2). The surface integrals involve
angular averages over the unit sphere of polyads of the unit normal having the
general form nn . . . n. In particular, one needs to evaluate

∫
nn dS,

∫
nnnn dS and∫

nnnnnn dS, all of which are appropriate permutations of the unit tensor δij (for
instance, see Bird et al. 1980). Performing the integrations, (4.10) reduces to

8π

15
(εRe) p p : [ε · (Γ · E + E · Ω)], (4.11)

where ε is the third-order unit alternating tensor. Using the expression for the elements
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of the velocity gradient tensor in the aforementioned particle-aligned coordinate
system, one finally obtains

13 · εRe

∫
r=1

dS(1 − p p : nn)n ∧ [Γ · u′s + (Γ · n) · ∇u′s + u′s · ∇u′s]

= εRe

[
4π

15
(sin θ cos θ sin4 φ + sin θ cos θ sin2 φ cos2 φ)

]
. (4.12)

Here, and in what follows, we consider only the component along 13 (or p⊥
2 because,

as seen earlier in § 3, it is this component of the angular velocity (=dθ/dt) that is
responsible for the drift across the inertialess Jeffery orbits.

The evaluation of the second term in (4.9) is, of course, much more tedious, as
is evident, in particular, from terms of the form u′s · ∇v′

i and v′
i · ∇u′s . We quote

below a result for spherical harmonics that allows a considerable simplification of
that calculation, however. This result, immediately proven from the orthogonality
properties of spherical harmonics (see Hobson 1931), may be stated in its general
form as ∫

Vs

ri1ri2 . . . rin1

∂ (n2)

∂rj1
∂rj2

. . . ∂rjn2

(
1

r

)
∂ (n3)

∂rk1
∂rk2

. . . ∂rkn3

(
1

r

)
dV = 0, (4.13)

provided n3 > n1 + n2.
We discuss its application in two instances: in the evaluation of the terms

Re

∫
Vs

1

r3
r ∧

5∑
i=1

∂v′
i

∂t
, and Re

∫
Vs

1

r3
r ∧

5∑
i=1

Γ · v′
i .

Using (A 14) and (A 15) in the Appendix, the following may easily be shown for
the singular solutions USS and UD:

(USS)i = ajbkri

∂2

∂rj∂rk

(
1

r

)
, (4.14)

∂2

∂rl∂rm

(USS)i = ajbk

[
δim

∂3

∂rl∂rj ∂rk

(
1

r

)
+ δil

∂3

∂rm∂rj∂rk

(
1

r

)

+ ri

∂4

∂rl∂rm∂rj∂rk

(
1

r

)]
, (4.15)

∂

∂rj

(UD)i = ck

∂3

∂ri∂rj ∂rk

(
1

r

)
, (4.16)

∂3

∂rj∂rk∂rl

(UD)i = cm

∂5

∂ri∂rj ∂rk∂rl∂rm

(
1

r

)
. (4.17)

In the light of the above results, it then follows that the minimum order of the
spherical harmonics in the v′

i is 2. Since the factor r/r3 in the volume integral is
just −∇(1/r), a spherical harmonic of the first order†, it then follows from (4.13)

† The order, in this context, refers to the order of the associated surface harmonic. The solid
harmonics, of course, have a negative order.
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with n1 = n2 = 1 that for the components of the fluid inertial contribution under
consideration, namely terms of the form

∫
Vs

1

r3
r ∧ ∂v′

i/∂t and

∫
Vs

1

r3
r ∧ (Γ · v′

i),

only the terms proportional to USS in (A 3)–(A 7) contribute; those involving ∇UD ,
∇∇USS and ∇∇∇UD contain spherical harmonics of the third or higher order, and
integrate to zero. With the USS being the only contribution, the unsteady inertial term

∫
Vs

1

r3
r ∧ σ 5

i=1∂v′
i/∂t

may, in fact, be shown to be identically zero owing to the antisymmetry of the cross-
product. Similar simplifications accrue for the remaining terms in the volume integral
too – in particular, the most complicated term in (A 3)–(A 7), that proportional to
∇∇∇UD , is also the one expressible in spherical harmonics of the highest order, and
consequently, makes no contribution towards the net torque.

Carrying out the integrations, the ‘3’ component of the second term in (4.9), in the
particle-aligned coordinate system, reduces to

Re

5∑
i=1

∫
Vs

1

r3
r ∧

[
∂v′

i

∂t
+ Γ · v′

i + (Γ · r) · ∇v′
i + u′s · ∇v′

i + v′
i · ∇u′s

]
dV · 13

= 2εRe

[
−32π

21
sin θ cos θ cos2 φ +

83π

36
sin θ cos3 θ sin2 φ cos2 φ

− 79π

252
sin3 θ cos θ sin2 φ cos2 φ +

83π

72
sin θ cos2 θ sin φ cos3 φ

− 83π

504
sin θ cos2 θ sin3 φ cos φ +

599π

504
sin3 θ sin3 φ cos φ

− 599π

504
sin3 θ sin φ cos3 φ +

π

36
sin θ cos θ

]
. (4.18)

Writing down the reciprocal theorem, given in the general from by (2.16), for a
neutrally buoyant particle with St =Re,

Re

[
(I1 − I2)(Ωp · p)(Ωp ∧ p) + I2(I − p p) · dΩp

dt
+ I1 p

d

dt
(Ωp · p)

]

= −3

∫
r=1

dSn ∧
{
(1 + hε)(Ωp ∧ n − Γ · n) − hεn · ∇u′(0)

}
− Re

∫
V

(r ∧ f )

r3
dV, (4.19)

we observe that the only remaining piece of information needed is an expression for
∂u′(0)/∂n, where u′(0) now corresponds to the velocity disturbance, to O(Re), due to a
torque-free sphere in simple shear. The O(Re) correction to the Stokes velocity field



Inertial effects on the orientation of nearly spherical particles in shear flow 277

for this case has been derived by Peery (1966), and is given by

u′(0)
Re =

5

96

(
− 21

r11
+

48

r10
− 63

r9
+

40

r8
− 4

r5

)
(E : r r)2r

+
1

288

(
70

r9
− 135

r8
+

147

r7
− 50

r6
− 72

r5
+

40

r3

)
(E : r r)(Γ · r)

+
1

288

(
70

r9
− 135

r8
+

123

r7
− 50

r6
+

72

r5
− 80

r3

)
(E : r r)(Γ † · r)

+
1

288

(
35

r9
− 135

r8
+

426

r7
− 250

r6
− 96

r5
+

20

r3

)
(Γ · r) · (Γ · r)r

+
1

288

(
35

r9
− 135

r8
+

234

r7
− 250

r6
+

96

r5
+

20

r3

)
(Γ † · r) · (Γ † · r)r

+
1

288

(
−10

r7
+

45

r6
− 141

r5
+

50

r4
− 24

r3
+

80

r

)
Γ † · (Γ · r)

+
1

288

(
−10

r7
+

45

r6
− 69

r5
+

50

r4
+

24

r3
− 40

r

)
Γ · (Γ † · r)

+
5

288

(
− 1

r7
+

6

r6
− 21

r5
+

20

r4
− 4

r

)
(Γ : Γ †)r. (4.20)

It is seen that (4.20) does not decay for large r , and is therefore incompatible with
the free-stream boundary condition at infinity. As mentioned earlier, this necessitates
a singular perturbation analysis in order to obtain a uniformly valid velocity field for
finite Re.

From (4.19), the ‘3’ component of the equatorial angular momentum balance for
finite Re is therefore given by

−εRe

4

(
8π

15

)
cos θ sin θ +

8π

15
Re(1 − 2ε)

dΩp3

dt

= −8π

(
1 − 3ε

5

)
Ωp3

+ 8πεE12 + πεRe sin θ cos θ

(
20

21
sin2 φ cos2 φ − 18

35
cos4 φ +

154

105
sin4 φ

)

+ 2εRe

[
−32π

21
sin θ cos θ cos2 φ +

83π

36
sin θ cos3 θ sin2 φ cos2 φ

− 79π

252
sin3 θ cos θ sin2 φ cos2 φ +

83π

72
sin θ cos2 θ sin φ cos3 φ

− 83π

72
sin θ cos2 θ sin3 φ cos φ +

599π

504
sin3 θ sin3 φ cos φ

− 599π

504
sin3 θ sin φ cos3 φ +

π

36
sin θ cos θ +

2π

15
sin θ cos θ sin2 φ

]
, (4.21)

where we have also used (4.12) and (4.18).
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As in § 3, we expand Ωp3 as a power series in ε and Re; the coefficient Ωc
p3

representing the leading-order inertial correction, at O(εRe), is then given by

Ωc
p3 =

1

15

[
cos θ sin θ

4
− sin θ cos θ

2
(sin2 φ − cos2 φ)

]

+
sin θ cos θ

8

(
20

21
sin2 φ cos2 φ − 18

35
cos4 φ +

154

105
sin4 φ

)

+
1

4

[
−32

21
sin θ cos θ cos2 φ +

83

36
sin θ cos3 θ sin2 φ cos2 φ

− 79

252
sin3 θ cos θ sin2 φ cos2 φ +

83

72
sin θ cos2 θ sin φ cos3 φ

− 83

72
sin θ cos2 θ sin3 φ cos φ +

599

504
sin3 θ sin3 φ cosφ

− 599

504
sin3 θ sin φ cos3 φ +

1

36
sin θ cos θ +

2

15
sin θ cos θ sin2 φ

]
, (4.22)

where the first term is identical to the expression for the inertial correction to the
angular velocity of a massive particle (ρp � ρf ), namely (3.14) in § 3. This term
in (4.22) then represents the contribution due solely to the inertia of the neutrally
buoyant particle; the remaining terms account for inertia of the suspending fluid.

The equation for the change in orbit constant, to O(Reε), may be written as

dC

dt
= εRe sec2 θΩc

p3 = (εReξn)C, (4.23)

where ξn, the rate of change of orbit constant with ρp = ρf , is given by

ξn(θ, φ) =
1

30

(
2 cos2 φ − 1

2

)
+

1

8

(
20

21
sin2 φ cos2 φ − 18

35
cos4 φ +

154

105
sin4 φ

)

+
1

4

[
−32

21
cos2 φ +

83

36
cos2 θ sin2 φ cos2 φ − 79

252
sin2 θ sin2 φ cos2 φ

+
83

72
cos θ sin φ cos3 φ − 83

72
cos θ sin3 φ cosφ +

599

504

sin2 θ

cos θ
sin3 φ cos φ

− 599

504

sin2 θ

cos θ
sin φ cos3 φ +

1

36
+

2

15
sin2 φ

]
. (4.24)

For small Re, both C and θ change only by an o(1) amount over a single Jeffery
cycle. The direction of the drift at O(εRe) is therefore determined by the sign of

ξ̄n(θ) = (1/2π)
∫ 2π

0
ξn(θ, φ)dφ, the rate of change averaged over a Jeffery rotation; here,

we have replaced the temporal average by an average over the phase φ, since the
angular velocity dφ/dt is constant at leading order. Using (4.24), it is easily found that

ξ̄n(θ) =

(
− 4051

40320
+

55

672
cos2 θ

)
, (4.25)

which is negative for all values of θ . Thus, for ε > 0( < 0), C → 0(∞), i.e. a neutrally
buoyant prolate spheroid drifts towards the vorticity axis for small but finite Re,
while an oblate spheroid does the opposite. Figure 4 depicts the trajectory of the
orientation vector of an oblate spheroid, with ε = −0.15 and Re = 0.2, as it spirals
out toward the flow–gradient plane. The outward spiralling is extremely tight for the
given parameters, with the resultant curve being almost space-filling on the scale of
the plot; a magnified view of the same curve, that includes the initial point, confirms
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Figure 4. (a) The orbit, projected onto the flow–gradient plane, of a neutrally buoyant oblate
spheroid in simple shear flow with Re = 0.2, ε = −0.15. The region marked by the rectangle is
then magnified in (b) and confirms the nature of the spiralling trajectory.

the nature of spiralling. Figure 5 shows a plot of the accompanying increase in the
normalized orbit constant C/(C + 1). Note that the oscillations in the orbit constant,
on the scale of a single Jeffery cycle, will not be captured in the equation for the
average drift characterized by (4.25)†. The above plots were generated by accounting

† The truncation of the non-spherical corrections, at O(ε), itself leads to a spurious oscillation
in the orbit constant at O(ε2); this, however, turns out to be smaller than the oscillations induced
by inertial forces.
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Figure 5. The increase in the normalized orbit constant C/(C + 1) with time, as an oblate
spheroid with ε = − 0.15 spirals out toward the flow–gradient plane for Re = 0.2. Note that
C/(C + 1) → 1 (C → ∞) as t → ∞ for an oblate spheroid with ρp = ρf .

for the O(εRe) correction, given by (4.22), contributing to the change in the polar
angle θ . The phase equation used for dφ/dt is only correct to O(ε); we do not
calculate Ωc

p3, since quantitative alterations in the phase at O(εRe) do not affect the
direction of drift.

Before proceeding to include the orienting effects of gravity in § 6, we note that
although the analysis above, and that in § 3, neglected gravity, they were also restricted
to considering two limiting situations where ρp = ρf and ρp � ρf . The leading-order
inertial drift in the respective cases causes the axis of a prolate spheroid, for instance,
to align with the vorticity axis or the flow–gradient plane. With a decrease in the
density ratio ρp/ρf , one then anticipates the long-time orientation behaviour of a
prolate spheroid to change from a tumbling motion in the flow–gradient plane to
a ‘log-rolling’ one about the vorticity axis; the transition for an oblate spheroid is
expected to be of an opposite character. For an arbitrary ratio of particle to fluid
densities, or in dimensionless terms, with St/Re arbitrary, one easily obtains that the
averaged drift coefficient governing the change in orbit constant, similar to (4.25), is
given by

ξ̄ (θ) =
St

60
+ Re

(
− 4723

40320
+

55

672
cos2 θ

)
(4.26)

in the dual limit St, Re � 1, the contributions due to the inertia of the particle and
the suspending fluid now being scaled by St and Re, respectively. Therefore, the polar
angle of a possible neutral orbit is given by

θn = cos−1

√
1

55

(
−56St

5Re
+

4723

60

)
, (4.27)
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implying that θn = π/2 for St/Re � 7.028, and θn = 0 for St/Re � 2.12, these, of
course, being consistent with results obtained earlier in that the flow–gradient
plane and vorticity axis, respectively, act as attractors in the limit St � Re and
for St = Re. The possibility of a steady orbit intermediate between the shearing plane
and the direction of vorticity is seen to exist only in the range of density ratios
2.12 <ρp/ρf (=St/Re) < 7.028. For this neutral orbit to represent a possible long-
time solution for the spheroidal orientation, it must, in addition, be stable. Now, since
the drift toward the vorticity axis, given by (4.25), is a decreasing function of θ , this
neutral orbit would be stable for a prolate spheroid (ε > 0) and unstable for an oblate
one (ε < 0). In the former case for θ < θn, (εξ̄ ) is positive, causing the orientation
vector p to migrate in the direction of higher C, and thence back towards the neutral
orbit; with θ > θn, the situation is reversed. For an oblate spheroid, the unstable
neutral orbit divides the unit sphere into two basins of attraction corresponding
to periodic and fixed-point asymptotic states coincident, respectively, with the flow
gradient plane and the vorticity axis. As was seen earlier, the tight nature of the
spiralling in the limit ε, Re � 1 makes it difficult to extract information from a plot
of the actual trajectory. It is therefore more convenient to represent the orientation
dynamics in terms of the normalized orbit constant as is done in figures 6 and 7 for
a prolate and oblate spheroid, respectively. The orientation behaviour is shown for a
density ratio of 3.5, and the attracting and repelling nature of the neutral orbit may
be inferred in the appropriate instances. A change in stability of the neutral orbit
in going from a prolate to an oblate deviation from sphericity causes the transitions
in orientation behaviour, as a function of the density ratio, for the two cases to no
longer be opposite in character.

5. Comparison with previous work
Saffman (1956) seems to have been the first to analyse the motion of a neutrally

buoyant spheroid in simple shear flow for small but finite Re. He derived, in effect,
an equation for the change in C̄, the orbit constant averaged over a complete Jeffery
rotation; the final result, in our notation, takes the form

dC̄

dt
= −0.24εReC̄. (5.1)

As noted earlier, the change in C over a single Jeffery period is o(1), and it therefore
makes sense to compare the above prediction to (4.23) with ξn replaced by ξ̄n. While
both (5.1), and (4.23) modified to include ξ̄ , predict the asymptotic approach of a
prolate (oblate) spheroid towards the vorticity axis (flow–gradient plane), the averaged
drift in the former is independent of the polar angle θ . Even the magnitude of the
predicted drift is at least twice as large; for instance, ξ̄n(θ) in (4.25) tends to its
most negative value at θ = π/2, this being approximately −0.1. In the same paper,
Saffman also concluded that particle inertia alone, when taken into account, would
not lead to any net drift. As demonstrated earlier in § 3, this is certainly not the
case. An erroneous prediction in the context of what is clearly a simpler problem
from an analytical perspective, leads us therefore to suspect the veracity of Saffman’s
procedure leading to (5.1). He, in fact, only gave a brief sketch of his method, making
any detailed comparison very difficult. From what is stated, it appears that rather than
using a reciprocal theorem formulation, he solved for the O(Re) inertial velocity field
due to the spheroid using, in essence, a regular perturbation approach, together with
an ad-hoc modification of the boundary condition at infinity; the latter is, of course,
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Figure 6. Plots of the normalized orbit constants for orbits lying on either side of the neutral
orbit of a prolate spheroid with a density ratio of 3.5, for St = 3.5, Re = 0.35, and ε = 0.1,
whence the polar angle of the neutral orbit is found to be approximately 30◦. The attracting
nature of the neutral orbit is readily evident.

needed in the light of the well-known failure of a regular perturbation expansion
for such problems†. Keeping in mind the algebraic complexity accompanying a

† To be fair, it must be mentioned that the singular perturbation approach was discovered in
1957, a year after Saffman’s analysis (for instance, see Proudman & Pearson 1957; Kaplun &
Lagerstrom 1957).
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Figure 7. Plots of the normalized orbit constants for orbits lying on either side of the neutral
orbit of an oblate spheroid with a density ratio of 3.5, for to St =3.5, Re = 0.35, and ε = 0.1,
whence the polar angle of the neutral orbit is found to be approximately 30 degrees. The
repelling nature of the neutral orbit is readily evident.

traditional perturbation approach to determining the angular velocity of a neutrally
buoyant spheroid, we are inclined to think that Saffman’s correct prediction with
regard to the direction of spheroidal drift may have been coincidental.

Subramanian & Koch (2005) have calculated the first effects of inertia on the
orientational behaviour of slender particles in simple shear flow. They find that inertial
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effects lead to a net drift of the slender particle toward the flow–gradient plane. The
contrasting orientational behaviour found for neutrally buoyant axisymmetric par-
ticles in the limit of large and near-unity aspect ratios suggests a possible bifurcation,
entailing a shift of the asymptotic attractor for the orientation vector from the flow–
gradient plane to the vorticity axis at an intermediate aspect ratio. We mention
below the results of Qi & Luo (2003), which seem to indicate that this critical aspect
ratio may not be far from unity. They have examined the orientational behaviour
of neutrally buoyant prolate and oblate spheroids, with axis ratios of 2 and 1/2,
respectively, in simple shear flow using lattice-Boltzmann simulations for Reynolds
numbers ranging from 8 to 117; here, the Reynolds number for the prolate and oblate
spheroids is defined based on their semi-major and semi-minor axes, respectively. They
found the spheroids to exhibit contrasting behaviour in different ranges of Reynolds
numbers. A prolate spheroid ‘tumbles’, while an oblate spheroid ‘rolls’ at the lowest
Reynolds numbers investigated. For higher Reynolds numbers, both spheroids exhibit
a range of intermediate precessing states wherein the mean precession angle between
the spheroidal orientation vector and the vorticity axis lies between 0 and π/2, and
decreases (increases) monotonically with increase in the Reynolds number for a
prolate (oblate) spheroid. At still higher Reynolds number, the prolate spheroid is
found to align itself with the vorticity direction. Thus, although the degeneracy of the
Stokes limit is absent in all cases owing to the presence of a unique attracting orbit,
the low-Reynolds-number orientational behaviour of the spheroids found by Qi &
Luo is the exact opposite of that predicted for a neutrally buoyant spheroid by the
analysis in § 4, indicating, for instance, that the bifurcating aspect ratio for a prolate
spheroid may lie between 1 and 2. We must add, however, that the aforementioned
difference between theory and simulation may also be attributed to other factors. To
begin with, the lowest Reynolds number at which simulations were carried out for
either spheroid is 8, while the theoretical analysis delineated in § 4 is strictly valid
only in the limit of weak inertial effects (Re � 1). It is also to be noted that the
simulations were carried out in a bounded domain, and as a result, the confinement
ratio, defined as the ratio of the distance between the bounding walls to the spheroidal
dimension, may play a role in the orientation behaviour observed. To investigate the
effects of confinement, Qi & Luo simulated the rotation of a prolate spheroid for
three different confinement ratios – 3, 4 and 4.5 – at a Reynolds number of 240
corresponding to a precessing behaviour. Their results showed that the precessing
spheroid shifts towards the vorticity axis with decreasing confinement, implying that
the boundedness of the domain may again be crucial to the discrepancy between the
theoretical and numerical results.

Some of the earliest experimental observations of irreversible motion of moderate-
aspect-ratio spheroids (prolate, axis ratio ≈2) in simple shear flow appear to be
those of Taylor (1923) who used aluminium spheroids suspended in water-glass, a
highly concentrated solution of sodium silicate. As discussed by Saffman (1956),
the Reynolds numbers in these experiments are O(10−5), and fluid inertial effects
are consequently too small to account for the experimentally observed time scales
for the drift of the spheroids. Virtually all later experimental efforts, with regard
to the motion of orientable particles in Newtonian fluids, focus on rods and disks,
being mostly restricted to vanishingly small Reynolds numbers; for instance, see
Trevelyan & Mason (1951), Karnis, Goldsmith & Mason (1966) and Frattini & Fuller
(1986). In the light of this lack of experimental data to confirm the aforementioned
theoretical and computational results, it would be of interest to perform controlled
experiments investigating the rotations of neutrally buoyant orientable particles
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in a small-gap Couette device as a function of their aspect ratio and Reynolds
number.

6. Rotation of sedimenting spheroids in simple shear flow
Here, we examine the orientational motion of a spheroid sedimenting in an ambient

simple shear flow, again in the limit of a near-unity aspect ratio. As referred to in
the introduction, the first effects of inertia both for sedimenting spheroids, and
for neutrally buoyant spheroids in simple shear flow, are, in principle, calculable
from a regular perturbation of the governing Navier–Stokes equations for small
values of the appropriate Reynolds number – Resed = Ua/ν for sedimentation, U

being the settling velocity, and Re = γ̇ a2/ν for simple shear. Thus, the dominant
contributions to the inertial torque in either case are due to stresses associated with
the O(Resed) or O(Re) velocity field at distances from the spheroid of order its own
size; the singular (outer) regions beyond the inertial screening lengths – aRe−1

sed for
sedimentation, and aRe−1/2 for shear – contribute stresses that are asymptotically
smaller in the limit Re, Resed � 1. The O(Resed)/O(Re) velocity field may then be
obtained from solving the inhomogeneous Stokes equations, the forcing terms being
the inertial acceleration, ResedDu0/Dt or Re Du0/Dt , arising from the leading-order
Stokes velocity disturbance in either case.

With sedimentation and shear combined, the leading-order inertial torque is still
related to the first correction to the Stokes velocity field obtained via a regular
perturbation expansion, now valid for distances less than the smaller of the two
inertial screening lengths. The inertial acceleration Du0/Dt due to the leading-order
Stokes velocity field in this case is no longer a superposition of the accelerations
associated with sedimentation and shear alone. Owing to its nonlinear nature, one
has, for instance, to account for the convection of the Stokes momentum defect in
sedimentation by the Stokes shear velocity field and vice versa; in addition, an inertial
force arises from unsteadiness of the sedimentation velocity field owing to the shear
acting to change the orientation of the settling spheroid. However, these ‘cross-terms’
do not contribute to the torque since the Stokes velocity fields in sedimentation and
shear are, respectively, even and odd functions of the displacement r from the centre of
the spheroid. Thus, while the complete velocity field in the coupled problem, including
the first inertial correction, is no longer a superposition of the inertial velocity fields
in sedimentation and shear alone, the part contributing to the inertial torque may
still be obtained by a linear superposition of the respective angular velocities.

We now investigate the three canonical situations where gravity is along the flow,
gradient and vorticity axes of simple shear. The case of gravity aligned with the
vorticity direction arises in a vertically aligned cylindrical Couette cell. The latter two
cases are encountered, for example, in horizontal and vertical channel flows of non-
neutrally buoyant particles. The O(Resed) dimensional torque acting on a spheroid
characterized by (2.8), and sedimenting in a quiescent fluid, may be obtained from
Cox’s results (Cox 1965) and, in our notation, is given by

L̄sed =
29π

20
µUa2(Resedε) sin η cos η, (6.1)

where η is the angle between the direction of translation and the axis of symmetry p,
and the sense of the torque is so as to make the orientation transverse to the direction
of sedimentation a stable one. In the limit ε � 1, U may be taken as the Stokes
settling velocity of a sphere, and therefore, coincident with the direction of gravity 1g;



286 G. Subramanian and D. L. Koch

thus, U = (2/9)a2�ρg/µ, �ρ being the density difference. When non-dimensionalized
with the shear rate γ̇ , (6.1) gives

Lsed =
29π

20

εRe2
sed

Re
sin η cos η, (6.2)

where η is now the angle between p and 1g .
It is convenient to calculate the inertial torque for the coupled problem, while not

imposing a restriction on the ratio of particle to fluid densities. In essence, we now
account for the effect of sedimentation on the drift coefficient derived in § 4 for an
arbitrary St/Re. Note that the torque due to sedimentation vanishes for a neutrally
buoyant particle, and the resulting orientation dynamics is still identical to that
characterized by ξ̄n(θ) in § 4. Using (4.21), the balance for the combined equatorial
angular momentum may now be written as

−εSt

4

(
8π

15

)
cos θ sin θ +

8π

15
St(1 − 2ε)

dΩp3

dt

= −8π

(
1 − 3ε

5

)
Ωp3 + 8πεE12 + πεRe

(
20

21
sin θ cos θ sin2 φ cos2 φ

− 18

35
sin θ cos θ cos4 φ +

154

105
sin θ cos θ sin4 φ

)

+ 2εRe

[
− 32π

21
sin θ cos θ cos2 φ +

83π

36
sin θ cos3 θ sin2 φ cos2 φ

− 79π

252
sin3 θ cos θ sin2 φ cos2 φ +

83π

72
sin θ cos2 θ sin φ cos3 φ

− 83π

72
sin θ cos2 θ sin3 φ cos φ +

599π

504
sin3 θ sin3 φ cos φ

− 599π

504
sin3 θ sin φ cos3 φ +

π

36
sin θ cos θ +

2π

15
(sin θ cos θ sin4 φ

+ sinθ cos θ sin2 φ cos2 φ)

]
+ Lsed3, (6.3)

where, as before, we only look at the ‘3’ component, this being responsible for the
drift across Jeffery orbits.

With 1g aligned in the vorticity direction, the only non-zero component of the
sedimentation torque is L3 given by (6.2) with η = θ , causing the orientation vector
p to migrate towards the flow–gradient plane; equation (6.3), averaged over a Jeffery
cycle, then leads to an equation for the orbit constant of the same general form as
(4.23), namely

dC

dt
= (εReξ̄s−vortw)C, (6.4)

where the averaged drift coefficient ξ̄s−vort is now given by

ξ̄s−vort(θ) =

[
St

60Re
− 4723

40320
+

55

672
cos2 θ +

29

160

(
Resed

Re

)2
]

. (6.5)
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Thus, provided

Resed

Re
� 2

(
1423

29232
− 2St

87Re

)1/2

, (6.6)

the additional torque due to sedimentation leads to the emergence of a unique neutral
orbit, intermediate between the flow–gradient plane and the vorticity axis, and at a
polar angle θn obtained now by setting ξ̄s−vort equal to zero; here

θn = cos−1

√√√√84

55

{
4723

5040
− 29

20

(
Resed

Re

)2

− 2St

15Re

}
, (6.7)

and is a monotonically increasing function of Resed. With Resed = 0, (6.7) reduces to
(4.27), derived earlier with the neglect of gravitational effects. As before, the neutral
orbit is only stable for a prolate spheroid. For the oblate spheroid, the unstable neutral
orbit again divides the unit sphere into basins of attraction corresponding to periodic
and fixed-point asymptotic states coincident, respectively, with the flow–gradient plane
and the vorticity axis.

The condition (6.6) may be reformulated as one that determines the critical value
of the particle to fluid density ratio at which the orientation dynamics undergo a
bifurcation – a change of attractor for a prolate spheroid, and a change in the basins
of attraction for an oblate one. With the equality in (6.6), one obtains a quadratic in
the density ratio, which is easily be solved to obtain the critical density ratio as(

ρp

ρf

)
c

=

(
1 − 4

87N2

)
+

√
16

7569N4
+

751

7308N2
, (6.8)

where N = (2aρf g)/(9µγ̇ ). For N → ∞, the inertial torque due to sedimentation
dominates and (ρp/ρf )c → 1, so the bifurcation occurs even for a particle only slightly
heavier than the suspending fluid. With N → 0, the change in the orientation dynamics
occurs at a density ratio determined only by the balance of particle and fluid inertial
forces due to the ambient shear, and is therefore independent of gravity; the critical
density ratio in this case was found to be approximately 2.12 in § 4. Thus, for prolate
particles heavier than those corresponding to (6.8), the attractor shifts to a neutral
orbit with θ = θn with 0 <θn < π/2, and for heavier oblate ones, a new basin of
attraction surrounding the vorticity axis emerges.

With 1g along the flow and gradient directions, the inertial torque due to sedimentat-
ion causes a prolate (oblate) spheroid to again migrate across Jeffery orbits in the
direction of decreasing (increasing) orbit constant, and thence, toward the vorticity
axis (flow–gradient plane). Thus, a possible bifurcation in the orientation dynamics
as a function of the density ratio is contingent on the inertia of the particle itself that,
as seen in § 3, drives a prolate (oblate) spheroid towards alignment with the flow–
gradient plane (vorticity axis), in opposition now to both the fluid inertial forces due
to shear and sedimentation. We also observe that the drift across Jeffery orbits due to
the inertial sedimenting torque is weaker for the flow and gradient cases in relation
to the vorticity case analysed above, since a component of the torque in either case
also modifies the phase relationship along a Jeffery orbit. In fact, with 1g along the
flow axis, the inertial drift due to sedimentation is perpendicular to the Jeffery orbits
only for orientations in the flow–vorticity plane (φ = 0); on the other hand, a similar
situation for gradient-aligned settling occurs only for p in the gradient–vorticity plane
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(φ = π/2). Therefore, the change in orbit constant resulting from the sedimentation
drift in both flow- and gradient-aligned settling contains a phase-dependent factor:
cos2 φ for the former and sin2 φ for the latter. The averaged drift coefficient for either
case is given by

ξ̄s−flow/s−grad(θ) =

[
St

60Re
− 4723

40320
+

55

672
cos2 θ − 29

320

(
Resed

Re

)2
]

(6.9)

where the coefficient of the sedimentation term in (6.9) is smaller than that in (6.5) by
a factor of 1/2, this arising from averaging the trigonometric phase factor of cos2 φ

or sin2 φ over a 2π-Jeffery cycle. Since the sedimentation term is now of an opposite
sign compared to (6.5), ξs−flow/s−grad is no longer a monotonically increasing function
of the density ratio. One again obtains an expression for the polar angle of a possible
neutral orbit by setting (6.9) equal to zero:

θn = cos−1

√√√√84

55

{
4723

5040
+

29

40

(
Resed

Re

)2

− 2St

15Re

}
. (6.10)

This, of course, corresponds to an actual (steady) orbit only if the argument of the
square root in (6.10) lies in the interval [0, 1], implying that the bracketed term lies in
the interval [0, 55/84]. When expressed in terms of a quadratic equation involving the
density ratio, this implies that, for a neutral orbit intermediate between the vorticity
axis and the shearing plane to exist, (ρp/ρf ) must lie in either of the open intervals,
((ρp/ρf )c1, (ρp/ρf )c2) or ((ρp/ρf )c3, (ρp/ρf )c4), where(

ρp

ρf

)
c1

=

(
1 +

8

87N2

)
−

√
64

7569N4
− 751

3654N2
, (6.11)

(
ρp

ρf

)
c2

=

(
1 +

8

87N2

)
−

√
64

7569N4
− 4051

3654N2
, (6.12)

(
ρp

ρf

)
c3

=

(
1 +

8

87N2

)
+

√
64

7569N4
− 4051

3654N2
, (6.13)

(
ρp

ρf

)
c4

=

(
1 +

8

87N2

)
+

√
64

7569N4
− 751

3654N2
. (6.14)

Based on figure 8, which depicts the nature of these intervals as a function of
increasing N , we make the following observations:

(a) In the limit of strong shear, i.e. with N � 1, one expects the effects of gravity
to be unimportant. Thus, the interval

(
(ρp/ρf )c3, (ρp/ρf )c4

)
goes off to infinity, while

the upper and lower limits of the first interval converge, respectively, to 2.12 and
7.028; as seen towards the end of § 4, the latter are the values, that, in the absence
of gravity, mark the emergence of the neutral orbit (from the vorticity axis) and its
merging into the flow–gradient plane, with increasing (ρp/ρf ).

(b) For any finite N less than N1 = (8/87)(3654/4051)1/2, the attractor for a prolate
spheroid starts off being coincident with the vorticity axis for (ρp/ρf ) < (ρp/ρf )c1.
With (ρp/ρf ) increasing beyond (ρp/ρf )c1, the polar angle of the emergent attracting
neutral orbit gradually increases from 0 till it equals π/2 at (ρp/ρf ) = (ρp/ρf )c2,
the orbit now coinciding with the flow–gradient plane. The flow–gradient plane
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Figure 8. The orientation dynamics of a prolate spheroid, as a function of the density ratio,
for increasing N , where N = (2aρf g)/(9µγ̇ ). Schematic (hatched) plots show the variation of
the polar angle θn of the attractor for each N . Note that the intervals, on the density axis, at
different N are not drawn to scale.

remains the attractor in the interval [(ρp/ρf )c2, (ρp/ρf )c3]. For (ρp/ρf ) > (ρp/ρf )c3,
the attractor leaves the shearing plane, and the emergent neutral orbit again tends
towards the vorticity axis with increase in the density ratio, becoming coincident with
it at (ρp/ρf ) = (ρp/ρf )c4. For all higher density ratios, a prolate spheroid drifts toward
the vorticity axis.

(c) At N1 = (8/87)(3654/4051)1/2, (ρp/ρf )c2 = (ρp/ρf )c3, so the two intervals, as
shown in figure 8, coalesce into one. For N1 <N <N2, where N2 = (8/87)(3654/751)1/2,
the orientation dynamics may be described as follows: at small (ρp/ρf ), the
attractor for a prolate spheroid is again coincident with the vorticity axis. For
(ρp/ρf ) > (ρp/ρf )c1, a neutral orbit emerges. However, unlike the previous case,
the polar angle characterizing the neutral orbit now increases up to a maximum
θn(max) < π/2, this being attained at a certain density ratio (ρp/ρf )m (say); both these
values are, of course, a function of N . Owing to the symmetry of the interval(
(ρp/ρf )c1, (ρp/ρf )c3

)
about 1 + (8/87N2), it turns out that (ρp/ρf )m = 1 + (8/87N2),

whence one finds

θn(max) = cos−1

√
28

55

{
4051

1680
− 8

435N2

}
.

It is readily verified that θn(max) is real-valued and 0<θn(max) < π/2 provided
N1 <N <N2; of course, θn(max) = π/2 for N = N1 and θn(max) = 0 for N =N2. For
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(ρp/ρf ) > (ρp/ρf )m, θn again decreases, and the neutral orbit finally coincides with
the vorticity axis at (ρp/ρf ) = (ρp/ρf )c4.

(d) At N2 = (8/87)(3654/751)1/2, (ρp/ρf )c1 = (ρp/ρf )c4. For N > N2, none of the
critical values (6.11)–(6.14) is real-valued. Thus, the prolate spheroid drifts towards
the vorticity axis regardless of the density ratio, this being indicative of the dominant
effect of gravity.

For an oblate spheroid, the neutral orbit (θ = θn), when it exists, is always unstable,
and thus the bifurcations in its orientation behaviour occur via a qualitative change
in the basins of attraction corresponding to the tumbling (flow–gradient plane) and
the spinning (vorticity axis) states. For instance, with N < N1, the flow–gradient
attractor remains an attractor for all density ratios up to (ρp/ρf )c1, and for all initial
orientations except that coincident with the vorticity direction. For density ratios
greater than this critical value, a new basin of attraction emerges surrounding the
vorticity direction and envelopes the entire unit sphere at (ρp/ρf )c4. The vorticity axis
continues to attract all initial orientations (except those in the shearing plane) in the
range [(ρp/ρf )c2, (ρp/ρf )c2]. For (ρp/ρf ) > (ρp/ρf )c3, this basin of attraction starts to
shrink until it finally reduces to a point, the intersection of the unit sphere with the
vorticity vector, at (ρp/ρf ) = (ρp/ρf )c4. The orientation dynamics remain qualitatively
unaltered at higher density ratios.

To summarize, the orientation dynamics of a non-neutrally buoyant spheroidal
particle in simple shear, as represented by its trajectories on the unit sphere of
orientations, exhibits bifurcations as a function of its density ratio. The nature of the
bifurcations depends on the direction of gravity relative to the plane of shear. With
gravity along the vorticity axis, the inertial torque due to sedimentation alone, for a
prolate spheroid, is consistent with alignment of p with the shearing plane. It is then
found, starting from a neutrally buoyant prolate spheroid, that the vorticity axis of
simple shear continues to be an attractor for all density ratios up to a critical value
given by (6.8); above this value, the attractor moves onto an orbit intermediate between
the vorticity axis and the shearing plane, eventually tending toward a tumbling state
in the flow–gradient plane. The orientation dynamics therefore remain qualitatively
unchanged from that described earlier in § 4 for the absence of gravity. With gravity
in the flow and gradient directions, the sedimenting torque acts to move the prolate
spheroid in the same direction as fluid inertial forces due to shear. Thus, the vorticity
axis ceases to be an attractor only for an intermediate range of densities lying
between the values given by (6.11) and (6.14); for density ratios lying in this range,
the attractor, as in the vorticity case, is again an orbit lying between the log-rolling
and tumbling states, including the flow–gradient plane as a limiting case for density
ratios in the sub-interval spanned by (6.12) and (6.13). For an oblate spheroid, the
emergent neutral orbit in all the aforementioned cases is unstable, and therefore acts
instead to alter the basins of attraction corresponding to the vorticity axis and the
flow–gradient plane.

7. Conclusions
In this paper we have analysed the leading-order effect of inertia on the orientation

dynamics of prolate and oblate spheroids in simple shear flow, in the limit where the
deviation from sphericity is small. In all cases the inertialess degeneracy, entailing an
intimate dependence of the long-time orientation distribution on initial conditions, is
eliminated. In the absence of gravity, the inertia of the particle and fluid are found to
induce opposing torques, the former causing a massive prolate particle to drift toward
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the flow–gradient plane. When the density ratio (ρp/ρf ) decreases below 7.028, the
attractor shifts onto an intermediate neutral orbit, and finally for density ratios less
than about 2.12, inertial forces in the fluid are strong enough to reverse this drift for
all initial orientations, and lighter prolate particles, including neutrally buoyant ones,
therefore tend toward the vorticity axis.

The inclusion of gravity changes the orientation dynamics in a manner that
depends on the relative orientations of gravity and shear. For gravity directed along
the vorticity axis, the inertial torque due to sedimentation only acts to enhance the
drift already present due to particle inertia, thereby leaving the orientation behaviour
qualitatively unchanged. Thus, while the numerical values of the density ratios for
its merging with the vorticity axis and the flow–gradient plane change, the attractor
continues to move toward the vorticity axis with a decrease in density ratio. Gravity
along the flow and gradient axes of simple shear changes the long-time orientation
dynamics in a non-trivial manner. For these cases, the axis of a prolate spheroid
is again found to range from a tumbling state in the flow–gradient plane, through
intermediate precessing states, to an axial spin (log-rolling) about the vorticity axis.
The orientation behaviour is, however, complex, with the the long-time dynamics
varying in a non-monotonic fashion with the density ratio ρp/ρf . As illustrated
in figure 8, the orientation behaviour now depends both on ρp/ρf and the shear
parameter N = 2aρf g/(µγ̇ ). For an oblate spheroid, the long-time orientational
dynamics correspond to either tumbling or rolling states in all instances, and the
relative magnitudes of the shear and sedimenting torques act instead to demarcate
the subsets of initial orientations that tend to either state for long times.

In order to illustrate the orientation distributions anticipated in typical shearing
flows of non-neutrally buoyant particles, both horizontal and vertical, we consider a
few examples:

(a) For glass particles (ρp = 2.8 g cm−3) of radius 50 microns in air, and with a
shear rate of 1 s−1, St ≈ 0.7, Re ≈ 2.5 × 10−4, and Resed ≈ 0.7. The value of the shear
parameter N is approximately 11, and is much greater than the higher of the two
critical values, namely. N2 = 0.2028, so that in horizontal or vertical channel flows of
such particulate suspensions, fluid inertia due to shear is negligible and inertial forces
due to sedimentation are dominant. According to the classification in § 6, the system
then falls in category (d), implying that prolate glass particles will exhibit vorticity
alignment at sufficiently dilute concentrations.

(b) On the other hand, for polystyrene micro-spheres (ρp = 1.05 g cm−3) in aqueous
media, the inertial torque due to sedimentation is much smaller owing to the small
density difference; for spheres with a = 50 microns, Resed ≈ 0.014. However, since,
(ρp/ρf ) < (ρp/ρf )c1 for all shear rates, fluid inertial forces due to shear dominate and
prolate particles in channel flows will again align with the vorticity axis.

(c) Glass beads suspended in a liquid medium arise in liquid–solid fluidized
beds; the latter configuration has recently been used in bio-reactors for microbial
sulfate reduction with porous glass micro-beads (a ≈ 100 microns) being used for the
purpose of cell immobilization. Typical values of the fluid density and viscosity may
be taken as ρf ≈ 1 g cm−3 and µ ≈ 2 × 10−2 Pa s. With ρp ≈ 2.5 g cm−3, one obtains
Re ≈ 5 × 10−4γ̇ , St ≈ 1.3 × 10−3γ̇ , Resed ≈ 0.01, and the shear parameter N ≈ 100/(9γ̇ )
for a characteristic shear rate γ̇ . Therefore, for gravity in the flow or gradient
directions, and with γ̇ < 55 s−1, the beads again exhibit vorticity alignment. Although
N equals the upper critical value N2 at γ̇ ≈ 55 s−1, (ρp/ρf )c4 < 2.5 at N =N2, so the
attractor continues to coincide with the vorticity axis. This is however the case only
for a narrow range of shear rates 55 s−1 < γ̇ < 63 s−1. For shear rates higher than the



292 G. Subramanian and D. L. Koch

latter value, (ρp/ρf )c4 exceeds 2.5, and the attractor for a prolate glass bead will move
onto an intermediate neutral orbit.

(d) Finally, transition metal catalysts (rhodium, palladium etc.) supported on
alumina (ρp = 3.9 g cm−3) are employed, for instance, in the hydrogenation of
vegetable oils. For a typical catalyst particle of 100 microns and a low-viscosity
oil (ρf ≈ 1 g cm−3, µ ≈ 3 × 10−2 Pa s), one has Resed ≈ 0.007; also, Re ≈ 3.33 × 10−4γ̇ ,
St ≈ 1.3 × 10−3γ̇ and N ≈ 200/(27γ̇ ). For a shear rate of 200 s−1, N ≈ 0.037 � 1,
(ρp/ρf )c3,c4 > 68, (ρp/ρf )c1 ≈ 2.13 and (ρp/ρf )c2 ≈ 7.03. This implies that prolate
catalyst particles, in a horizontal or vertical flow configuration, with (ρp/ρf ) ≈ 3.9
will, for these shear rates, asymptote toward an intermediate precessing state with a
polar angle given by (6.10); this, of course, corresponds to N � 1 in figure 8. It is also
evident from the figure that the density ratio, (1 + 8/87N2), always corresponds to a
tumbling state, independent of N ; with a decrease in shear rate, the aforementioned
ratio equals 3.9 for γ̇ ≈ 44 s−1. Correspondingly, the polar angle of the neutral orbit
continues to increase with decreasing γ̇ , equalling π/2 at γ̇ ≈ 42 s−1. For lower shear
rates, the neutral angle now starts decreasing with the neutral orbit coinciding with the
vorticity axis at γ̇ ≈ 37 s−1. For still lower shear rates, prolate particles will continue
to align with the vorticity direction as the inertial torque due to gravity becomes
dominant.

Previous work accounting for inertial effects in the translation of non-neutrally
buoyant spheroids in shear flows have neglected a similar influence on the orientation
behaviour. The translation of an orientable particle being coupled to its orientation,
the present analysis shows that such a simplistic approach may often lead to incorrect
conclusions. For instance, Broday et al. (1998) show, for finite St , that the asymmetry
of the distribution in phase of a spheroidal particle with respect to the gradient axis,
in a vertical shear flow, leads to a lateral migration across streamlines; this is relevant
to aerosol depositional processes in turbulent flows. However, in their analysis they
constrained the spheroid to execute a tumbling motion in the flow–gradient plane, so
the resulting dynamics is effectively two-dimensional. Clearly, both gravity and fluid
inertial forces render the tumbling state in this geometry an unstable one, and any
deviation from it would therefore lead to a drift toward an asymptotic state of axial
spin, that would then act to curtail the lateral migration. It is hoped that our results
for the orientational behaviour of spheroidal particles would be taken into account
in other similar approaches that examine the motion of non-spherical particles in
external flows.

Appendix. The velocity disturbance due to an arbitrarily oriented
torque-free spheroid in simple shear flow

Here, we use the results of Chwang & Wu (1975) in order to derive an expression for
the Stokes velocity disturbance due to an arbitrarily oriented torque-free spheroid in
simple shear flow. The limiting form of the resulting expression, for a small deviation
from sphericity, is then used in § 4 to determine the angular velocity of a torque-free
neutrally buoyant near-sphere in simple shear flow for small but finite Re.

The velocity-gradient tensor in simple shear, in a coordinate system aligned with
the spheroid axis (11), is given by

Γ =

⎡
⎢⎣ sin2 θ cos φ sin φ sin θ cos θ sin φ cos φ sin θ cos2 φ

sin θ cos θ sin φ cos φ cos2 θ sin φ cos φ cos θ cos2 φ

−sinθ sin2 φ −cosθ sin2 φ −sinφ cos φ

⎤
⎥⎦ (A 1)
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and has eight independent elements in an incompressible flow. The angles θ and φ have
been defined in § 3, and we only note that the above coordinate system is chosen with
one of its axes (13) perpendicular to the vorticity vector, so that Γ12 = Γ21, thereby
eliminating one of the rotations – the component Ω12 of the vorticity tensor. An
inertialess torque-free particle in a linear flow, in fact, generates a velocity disturbance
only due to the extensional part of the flow. Thus, even the two remaining components
of the vorticity tensor (Ω23 and Ω13) are rendered superfluous in the calculation of
u′. We are therefore left with the five independent elements of E. Keeping in mind
the motions considered by Chwang & Wu (1975), the linear flow relative to the
spheroid may then be regarded as a superposition of the following five component
flows:

(a) Planar extensions in each of two orthogonal planes (1−3 and 1−2) containing
the spheroidal axis, with axes oriented at 45◦ relative to it (u′

1 and u′
2 below).

The velocity disturbance for these cases may be obtained from Chang & Wu by
superposing their problems of ‘longitudinal shear’ and ‘cross-flow with longitudinal
rate of shear’.

(b) Two extensions, both in the equatorial plane (2 − 3) of the spheroid, with
principal axes that are at 45◦ to each other (u′

3 and u′
4 below). The velocity disturbance

for these cases is obtained by a symmetric superposition of ‘cross-flows with a
transverse rate of shear’, again considered by Chang & Wu.

(c) An axisymmetric extension with the extensional axis coincident with the
spheroidal axis of symmetry (u′

5 below).
Stated mathematically, the above amounts to the following decomposition of E:

⎡
⎢⎣

sin2 θ cosφ sin φ sin θ cos θ sin φ cos φ 1
2
sin θ(cos2 φ − sin2 φ)

sin θ cos θ sin φ cos φ cos2 θ sin φ cosφ 1
2
cos θ(cos2 φ − sin2 φ)

1
2
sin θ(cosφ − sin2 φ) 1

2
cos θ(cos2 φ − sin2 φ) −sinφ cos φ

⎤
⎥⎦

=

⎡
⎢⎣

0 sin θ cos θ sin φ cos φ 0

sin θ cos θ sin φ cosφ 0 0

0 0 0

⎤
⎥⎦

+

⎡
⎣ 0 0 1

2
sin θ(cos2 φ − sin2 φ)

0 0 0
1
2
sin θ(cos2 φ − sin2 φ) 0 0

⎤
⎦

+

⎡
⎢⎣
0 0 0

0 0 1
2
cos θ(cos2 φ − sin2 φ)

0 1
2
cos θ(cos2 φ − sin2 φ) 0

⎤
⎥⎦

+

⎡
⎢⎣
0 0 0

0 1
2
(2 − sin2 θ) sin φ cos φ 0

0 0 − 1
2
(2 − sin2 θ) sin φ cosφ

⎤
⎥⎦

+

⎡
⎢⎣
sin2 θ sin φ cos φ 0 0

0 − 1
2
sin2 θ sin φ cos φ 0

0 0 − 1
2
sin2 θ sin φ cos φ

⎤
⎥⎦ . (A 2)
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The velocity disturbance fields corresponding to the above component flows, as
derived from Chwang & Wu (1975), are as follows:

u′
1 = (sin θ cos θ sin φ cos φ)

[
α1

∫ e

−e

(e2 − ζ 2)USS(r − ζ ; 11, 12) dζ

+
β1

2

∫ e

−e

(e2 − ζ 2)2
{

∂UD

∂r1

(r − ζ ; 12) +
∂UD

∂r2

(r − ζ ; 11)

}]
, (A 3)

u′
2 =

sin θ(cos2 φ − sin2 φ)

2

[
α1

∫ e

−e

(e2 − ζ 2)USS(r − ζ ; 11, 13) dζ

+
β1

2

∫ e

−e

(e2 − ζ 2)2
{

∂UD

∂r1

(r − ζ ; 13) +
∂UD

∂r3

(r − ζ ; 11)

}]
, (A 4)

u′
3 = cos θ(cos2 φ − sin2 φ)

[
α2

∫ e

−e

(e2 − ζ 2)USS(r − ζ ; 12, 13) dζ

+
β2

2

∫ e

−e

(e2 − ζ 2)2
{

∂UD

∂r2

(r − ζ ; 13) +
∂UD

∂r3

(r − ζ ; 12)

}]
, (A 5)

u′
4 = (sin2 θ − 2) sin φ cosφ

[
α2

∫ e

−e

(e2 − ζ 2)USS(r − ζ ; 1′
2, 1

′
3) dζ

+
β2

2

∫ e

−e

(e2 − ζ 2)2
{

∂UD

∂r ′
2

(r − ζ ; 1′
3) +

∂UD

∂r ′
3

(r − ζ ; 1′
2)

}]
, (A 6)

u′
5 =

sin2 θ cos φ sin φ

2

[
α3

∫ e

−e

(e2 − ζ 2)USS(r − ζ ; 11, 11)

+ β3

∫ e

−e

(e2 − ζ 2)2
∂UD

∂r1

(r − ζ ; 11)

]
, (A 7)

where ζ = ζ11 is a coordinate along the axis of the spheroid and 2e is the inter-focal
distance, with the eccentricity e being given by e = (2ε)1/2. The constants αi and βi

are given by

α1 =
e2

[
−2e(1 − 2e2) + (1 − e2) ln 1+e

1−e

][
−2e2 + (1 + e2) ln 1+e

1−e

][
2e(2e2 − 3) + 3(1 − e2) ln 1+e

1−e

] , (A 8)

β1 =
(1 − e2)

[
−2e2(1 − 2e2) + (1 − e2) ln 1+e

1−e

]
8
[
−2e2 + (1 + e2) ln 1+e

1−e

][
2e(2e2 − 3) + 3(1 − e2) ln 1+e

1−e

] , (A 9)

α2 =
2e2(1 − e2)[

2e(3 − 5e2) − 3(1 − e2)2 ln 1+e
1−e

] , (A 10)

β1 =
(1 − e2)2

2
[
2e(3 − 5e2) − 3(1 − e2)2 ln 1+e

1−e

] , (A 11)

α3 =
e2[

6e − (3 − e2) ln 1+e
1−e

] , (A 12)

β3 =
(1 − e2)

4
[
6e − (3 − e2) ln 1+e

1−e

] , (A 13)



Inertial effects on the orientation of nearly spherical particles in shear flow 295

with the unit vectors 1′
2 and 1′

3, spanning the transverse plane of the spheroid, being

defined as 1′
2 = (12 + 13)/

√
2 and 1′

3 = (13 − 12)/
√

2, respectively. The velocity fields
are thus expressed in terms of distributions of the fundamental singular solutions of
the Stokes equations along the spheroidal axis: USS here is the stresslet velocity field
representing a straining motion of the liquid, while UD is the potential doublet. With
[a, b, c] being a set of unit vectors, these singular solutions are defined as

USS(r; a, b) =

[
− a · b

r3
+

3(a · r)(b · r)
r5

]
r, (A 14)

UD(r; c) = − c
r3

+
3(c · r)r

r5
. (A 15)

The above singularity solutions were originally derived by Chwang & Wu for the
particular case of a prolate spheroid; there does not exist an analogue for an oblate
spheroid for finite eccentricity. In the limit e → 0, however, the velocity disturbance
due to an oblate spheroid may still be obtained from the above expressions. The
limiting velocity fields are, in fact, expansions in e2 with the leading-order term
corresponding to the Stokes velocity field due to a freely rotating sphere in simple
shear (see u′s in (4.2)). The eccentricity e, as defined above, is imaginary for an
oblate spheroid, implying that the next term of O(e2) in the expansion is opposite in
sign. Corrections to the Stokes velocity field of a sphere, due to prolate and oblate
deviations from sphericity, therefore differ only in sign. This is, of course, also evident
from the analysis in § 3 where the spheroid was represented as r =(1 + εh), the sign
of ε determining the nature of the spheroid.

In the limit e → 0, the distributions of stresslet and potential quadrupole singularities
in the expressions for the velocity fields have only an O(e) spread about the geometric
centre r of the spheroid, and one may expand functions of the form f (r − ζ11) in
(A 3) to (A 6) as a Taylor series. Carrying out the expansions and the subsequent
integrations, and identifying e2/2 with the shape factor ε, one obtains (4.2) with the
vi defined by (4.3)–(4.7).
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